首页|神经网络辅助理论本构模型预测高熵合金高温流动应力行为

神经网络辅助理论本构模型预测高熵合金高温流动应力行为

扫码查看
本文建立了一套确定双曲正弦Arrhenius型方程系数的神经网络模型,选取了高熵合金不同高温和应变速率下的流动应力预测来验证模型.首先采用Al0.3CoCrFeNi高熵合金进行检验,并与传统方法进行比较,结果表明,神经网络方法在高应变速率和低温条件下得到的系数能够更好地描述试验热流应力.进一步采用均方根误差(RMSE)和相关系数(R)对模型结果和试验结果进行评估,神经网络方法在整体数据下的RMSE和R分别为27.7和0.985,优于传统方法的33.1和0.979.最后,利用该神经网络模型研究了其他高熵合金,如(CoCrNi)94 Ti3Al3、FeCrCuNi2Mn2和AlCrCuFeNi的热变形行为,神经网络预测结果与试验结果吻合好,表明该神经网络模型具有较好的普遍适用性.
A Neural Network-assisted Theoretical Constitutive Model to Predict the High Temperature Flow Behavior of High-entropy Alloys
Metals and alloys are widely used in industry due to their excellent mechanical properties.Researchers have been continuously searching new materials with better properties or mechanisms to en-hance existing ones.In the metal and alloy forming process,hot deformation can effectively refine the grain and improve mechanical properties such as yield strength and tensile strength.Therefore,it is neces-sary to study the deformation behavior of metal and alloy materials at high temperatures.The hyperbolic-sinusoidal Arrhenius-type model has been widely used by researchers because of its good simulation effect at high temperatures.In this paper,the building process of the model is studied,and the modeling process is optimized with the help of a neural network model.A neural network model is constructed to efficiently determine the hyperbolic-sinusoidal Arrhenius-type equations,based on which the flow stress of high-en-tropy alloys(HEAs)for different high temperatures and strain rates can be well predicted.The reported hot deformation behaviors of Al0.3CoCrFeNi HEAs are examined by current model.The results show that the coefficients obtained by the neural network method can better describe the experimental hot flow stress,especially at high strain rate or low temperature conditions.The root-mean-square error(RMSE)and the correlation coefficient R are used to assess the degree of difference between the results.The RMSE and R of the neural network method at total data are 27.7 and 0.985,respectively,which are better than 33.1 and 0.979 of the traditional method.To show the general applicability of the model,the hot deforma-tion behaviors of(CoCrNi)94Ti3 Al3,FeCrCuNi2Mn2,and AlCrCuFeNi are analyzed by the model.The re-search work presented in this paper can improve the efficiency and accuracy of the hyperbolic-sinusoidal Arrhenius-type model and reduce the difficulty of establishing the model,and is of positive significance for the wide use of the model.

high-entropy alloyshigh-temperature deformationneural networkconstitutive equa-tion

姜健、胡涛、庄三少、冯淼林

展开 >

上海交通大学船舶海洋与建筑工程学院工程力学系(海洋工程国家重点实验室),上海,200240

高熵合金 高温变形 神经网络 本构方程

国家自然科学基金项目国家自然科学基金项目中国核工业集团领创科研项目资助

U206722052371284

2024

固体力学学报
中国力学学会

固体力学学报

CSTPCD北大核心
影响因子:0.605
ISSN:0254-7805
年,卷(期):2024.45(3)