首页|面内周期性结构多分辨率拓扑优化设计

面内周期性结构多分辨率拓扑优化设计

扫码查看
复合材料在微观尺度上具有复杂的结构形式,对其进行结构分析设计需要精细化有限元网格剖分,导致计算规模庞大.面内周期性结构作为一种常见的复合材料结构形式,在宏观尺度上可以承受任意方向载荷,但是其性能表征困难,设计分析难度较大.本文基于厚板假设和多分辨率网格策略,建立了面内周期性结构的高效拓扑优化方法.首先,利用粗糙网格对宏微观结构进行解耦分析,求解微观边值条件,进行非均质单胞的力学性能等效表征;其次,根据均匀化等效性能求解宏观边值条件,利用精细网格进行设计变量更新和密度变量映射.一方面,考虑面外剪切变形的厚板假设使双尺度拓扑优化设计更符合实际承载场景;另一方面,利用多分辨率建模策略,在不牺牲优化构型分辨率的前提下,避免有限元计算量过大导致可求解问题规模受限的问题.
Multi-resolution Topology Optimization Method for Composite Structures with In-plane Periodicity
At a microscopic level,composite materials exhibit intricate structural designs,necessita-ting detailed finite element mesh discretization for their analysis and design,leading to extensive computa-tional demands.While the in-plane periodic structure,a typical composite structure,can sustain various directional forces at a macroscopic level,defining its performance remains challenging and its design and a-nalysis are complex.This paper introduces a method for optimizing the topology of in-plane periodic struc-tures based on thick plate theory and a multi-resolution meshing strategy.Initially,a coarse mesh is used to distinguish between macro and micro configurations,address the micro boundary value problem,and perform a similar analysis of the mechanical characteristics of the irregular single cell;subsequently,the macroscopic boundary value problems are solved using uniform equivalent properties,and a fine mesh is employed to revise the design variables and chart the density variables.It is found that assuming a thick plate that accounts for out-of-plane shear deformation makes the two-scale topology optimization design closer to real load-bearing scenarios.Employing a multi-resolution meshing strategy circumvents the issue of limited solvable problem size caused by excessive finite element computation,while maintaining the res-olution of the optimized configuration.

in-plane periodic structuresthick plate theorymulti-resolution meshtwo-scale topolo-gy optimization

邹胤康、李少华、邱文科、夏凉

展开 >

华中科技大学智能制造装备与技术全国重点实验室,武汉,430074

面内周期性结构 厚板假设 多分辨率网格 双尺度拓扑优化

国家自然科学基金项目

11972166

2024

固体力学学报
中国力学学会

固体力学学报

CSTPCD北大核心
影响因子:0.605
ISSN:0254-7805
年,卷(期):2024.45(4)