首页|一种用于紫外光通信网络的改进蚁群算法

一种用于紫外光通信网络的改进蚁群算法

扫码查看
由于紫外光通信网络信道时变性强,需要对应的自适应路由来解决组网过程中出现的网络传输时延大和节点能量消耗不均衡等问题.基于蚁群优化(ACO)算法,提出了一种用于紫外光通信网络中的改进ACO算法.该算法将网络节点能量引入到ACO算法状态转移概率公式中,并通过Matlab软件仿真分析了算法在不同收发角度、发射功率和数据传输速率条件下的时延性能.仿真结果表明:与ACO算法相比,当收发仰角为 50°时,所提算法的时延降低了 1s,收敛速度提升了28%,收敛路径的平均剩余能量也明显提高,有效地延长了网络的生存周期.
Improved ant colony algorithm for ultraviolet communication network
Due to the strong time-varying nature of the ultraviolet communication network channel,corresponding adaptive rout-ing is needed to solve the problems of high network transmission delay and uneven energy consumption of nodes during the net-working process.Based on ant colony optimization(ACO)algorithm,an improved ACO algorithm for ultraviolet communication networks is proposed.The algorithm introduces the network node energy into the state transition probability formula of ACO al-gorithm,and analyzes the delay performance of the algorithm under different transmitting angles,transmitting power and data transmission rates by Matlab simulation software.The simulation results show that compared with the ACO algorithm,when the transmit-receive elevation is 50°,the delay of the proposed algorithm is reduced by 1 s,the convergence speed is increased by 28%,the average residual energy of the convergence path is also significantly increased,and the life cycle of the network is effec-tively extended.

ultraviolet communicationant colony optimizationnetwork transmission delayaverage residual energyself-orga-nizing network

邱达、李建华、汪井源、韦玮

展开 >

南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,南京 210023

中国人民解放军陆军工程大学通信工程学院,南京 210007

紫外光通信 蚁群算法 网络传输时延 平均剩余能量 自组织网络

国家自然科学基金国家自然科学基金

6217146362271502

2024

光通信技术
中国电子科技集团公司第34研究所

光通信技术

北大核心
影响因子:0.372
ISSN:1002-5561
年,卷(期):2024.48(2)
  • 14