首页|一种用于Bi-LSTM神经网络信号识别的DO-CAB算法

一种用于Bi-LSTM神经网络信号识别的DO-CAB算法

扫码查看
针对双向工频通信系统(TWACS)存在上行信号识别准确率不足的问题,提出一种基于蒲公英优化(DO)算法的联合卷积神经网络(CNN)与注意力机制(AM)的双向长短时记忆(Bi-LSTM)神经网络信号识别算法,简称DO-CAB算法.该算法首先通过CNN自适应提取TWACS信号重要特征,然后使用DO算法优化Bi-LSTM超参数,根据优化的超参数构建网络,并引入AM赋予输入影响权重,以获得更好信号识别效果.实验结果表明,所提算法的识别准确率达到92.32%,能高效、准确识别TWACS调制信号.
DO-CAB algorithm for Bi-LSTM neural network signal recognition
To address the problem of insufficient recognition accuracy for uplink signals in two-way automatic communication systems(TWACS),a signal recognition algorithm based on the dandelion optimization(DO)algorithm that combines convolutional neural network(CNN)with attention mechanism(AM)and bidirectional long short-term memory(Bi-LSTM)neural networks is proposed,which is briefly referred to as the DO-CAB algorithm.The algorithm first adaptively extracts important features of TWACS signals using a CNN.It then optimizes the hyperparameters of the Bi-LSTM using the DO algorithm,constructs the net-work based on the optimized hyperparameters,and introduces an AM to assign influence weights to the inputs,improving the net-work algorithm for better signal recognition.The experimental results show that the proposed algorithm achieves a recognition accuracy of 92.32%,enabling efficient and accurate identification of TWACS modulated signals.

two-way automatic communication systemsdandelion optimization algorithmbidirectional long short-term memo-ry networkdeep learningsignal detection

花国祥、汤炼海、李伟伟、李鹏、孙炎

展开 >

无锡学院自动化学院,江苏无锡 214105

华北电力大学电气与电子工程学院,北京 102206

南京信息工程大学,南京21004

双向工频通信系统 蒲公英优化算法 双向长短时记忆网络 深度学习 信号检测

2024

光通信技术
中国电子科技集团公司第34研究所

光通信技术

北大核心
影响因子:0.372
ISSN:1002-5561
年,卷(期):2024.48(6)