首页|改进的K-means算法在遥感图像分类中的应用

改进的K-means算法在遥感图像分类中的应用

扫码查看
遥感图像分类时,如果类别不明,K-means算法随机选取不同初值会导致分类结果有较大的差异.针对此问题,提出了一种改进的K-means算法.首先对遥感数据进行对数变换;然后采用主成分变换,依据主成分贡献率(≥85%)选择参与分类的主成分数;根据第一主成分的概率密度函数确定初始分类数和初始分类中心,并确定初始分类标签作为多个主成分的期望最大化(EM)分类算法所需初始值,避开了随机选取初值的敏感问题.通过实验数据验证,本文方法的分类精度优于传统的基于均值一方差的K-means算法.
An Improved K- means Algorithm for Remote Sensing Classification
If the classification type is unknown, the K - means algorithm will randomly select the initial values, and different initial values will lead to differences in remote sensing image classification results. To solve such problems, this paper proposes an improved K - means algorithm. First, logarithmical transform is performed for the original data, and then principal component transformation is implemented. The number of principal components for the K- means algorithm is determined according to the contribution rate ( ≥ 85% ). The proposed method can weaken the noise. Kernel density estimation can be used to determine the probability density function of the first principal component, from which the initial label for multi - dimensional K - means algorithm can be efficiently determined, and the sensitivity of the initial value selected at random can be avoided. Experiments show that the accuracy of the method proposed in this paper is higher than that of the traditional K - means based on mean-variance.

K - meansLogarithmical transformPrincipal component transformationProbability density function

赵越、周萍

展开 >

中国地质大学(北京)地球科学与资源学院,北京,100083

K-means 对数变换 主成分变换 概率密度函数

2011

自然资源遥感
中国国土资源航空物探遥感中心

自然资源遥感

CSTPCDCSCD北大核心
影响因子:1.275
ISSN:2097-034X
年,卷(期):2011.(2)
  • 4
  • 6