首页|基于灰度共生矩阵的彩色遥感图像纹理特征提取

基于灰度共生矩阵的彩色遥感图像纹理特征提取

扫码查看
纹理在图像检索和分类中起着非常重要的作用.目前已有的纹理特征提取算法大多只能提取灰度图像的纹理特征,用于彩色图像的纹理特征提取算法则很少.参照对灰度共生矩阵(gray level co-occurrence matrix,GLCM)的分析方法,实验和分析了方向、距离、灰度级和窗口大小等参数对彩色图像GLCM纹理特征的影响,实现了基于GLCM的彩色图像纹理特征提取方法(color GLCM,CGLCM);通过分析上述参数对角二阶矩、熵、对比度和相关性等4个纹理特征的影响规律,给出了合理的参数取值范围,优化了CGLCM方法.将CGLCM方法和GLCM方法进行对比的结果表明,用CGLCM方法计算的角二阶矩、熵、对比度和相关性等4个纹理特征的稳健性更好、鉴别能力更强.上述研究结果可为基于纹理信息的图像检索和分类提供参考.
Extraction of color image texture feature based on gray-level co-occurrence matrix
Texture plays a very important role in image retrieval and classification,and texture feature extraction has been a research hotspot.Most present existing texture extraction algorithms can be only used to calculate texture features of gray image.Texture extraction algorithm for color image is very few.Referring to the analytical method of gray level co-occurrence matrix (GLCM),the authors analyzed the influence law of parameters (direction,distance,grayscale,window size)on GLCM texture features of color image.A color image texture feature extraction method (color GLCM,CGLCM)based on GLCM was realized.Through analyzing the influence law of these parameters on four texture features (ASM (angular second moment),Entropy,Contrast,Correlation),a proper parameter value range was given and the CGLCM method was optimized.The results of comparing CGLCM method with GLCM method show that the four texture features calculated with CGLCM method have better robustness and identification capability.These results can provide reference for image retrieval and classification based on texture information.

color imageimage retrieval and image classificationtexturegray level co-occurrence matrix (GLCM)texture feature

侯群群、王飞、严丽

展开 >

西北农林科技大学资源环境学院,杨凌712100

中国科学院水利部水土保持研究所,杨凌 712100

彩色图像 图像检索和分类 纹理 灰度共生矩阵(GLCM) 特征值

国家自然科学基金中国科学院重点部署项目*中荷联合主题研究项目中国科学院对外合作重点项目

41171420KZZD-EW-04-07-04GJHZ1018OND1339291

2013

自然资源遥感
中国国土资源航空物探遥感中心

自然资源遥感

CSTPCDCSCD北大核心
影响因子:1.275
ISSN:2097-034X
年,卷(期):2013.25(4)
  • 55
  • 11