首页|多任务学习孪生网络的遥感影像多类变化检测

多任务学习孪生网络的遥感影像多类变化检测

扫码查看
精确掌握土地覆盖/利用的变化及变化类型对国土空间规划、生态环境监测、灾害评估等有着重要意义,然而现有大部分变化检测研究主要关注二值变化检测。为此,该文首先提出了一种多任务学习深度孪生网络用于遥感影像的多类变化检测。首先提出面向对象的无监督变化检测方法,选择出新、旧时相影像中最有可能发生变化和最不可能发生变化的区域,并作为多任务学习深度孪生网络的样本;其次,采用多任务学习深度孪生网络模型同时对新、旧时相的土地利用图以及新、旧时相的二值变化图这 3 个任务模型进行学习和预测;最后,基于模型预测的新、旧时相土地利用图及新、旧时相的二值变化图获取最终的多类变化检测结果。采用第三次全国国土调查的影像数据和相应的土地利用图斑数据对多任务学习深度孪生网络模型进行了测试,结果表明所提出的方法适用于这种在没有变化、未变化样本而有历史专题图的变化检测场景中。
Multi-class change detection using a multi-task Siamese network of remote sensing images
The accurate acquisition of land cover/use changes and their types is critical to territorial space planning,ecological environment monitoring,and disaster assessment.However,most current studies on the change detection focus on binary change detection.This study proposed a multi-class change detection method using a multi-task Siamese network of remote sensing images.First,an object-oriented unsupervised change detection method was employed to select areas that were most/least prone to change in the new and old temporal images.These areas were used as samples for the multi-task Siamese network.Subsequently,the multi-task Siamese network model was used to learn and predict the new and old temporal land-use maps and binary change maps.Finally,the final multi-class change detection results were derived from these maps.The multi-task Siamese network was tested based on the images from the Third National Land Survey and corresponding land-use maps.The results demonstrate that the method proposed in this study is applicable to the change detection cases where changed and unchanged samples lack but there are available historical thematic maps.

multi-task learningSiamese networkmulti-class change detectionthe third national land resource survey

马惠、刘波、杜世宏

展开 >

河南省国土空间调查规划院,郑州 450016

北京大学遥感与地理信息系统研究所,北京 100871

多任务学习 孪生网络 多类变化检测 第三次全国国土调查

国家重点研发计划政府间国际创新合作

2021YFE0117100

2024

自然资源遥感
中国国土资源航空物探遥感中心

自然资源遥感

CSTPCD北大核心
影响因子:1.275
ISSN:2097-034X
年,卷(期):2024.36(1)
  • 30