首页|基于机器学习算法的机载高光谱图像优势树种识别

基于机器学习算法的机载高光谱图像优势树种识别

扫码查看
对森林树种类型进行识别可以为森林资源清查工作的开展提供科学的参考价值,如何利用空间分辨率较高的高光谱数据准确识别森林优势树种是当前亟待解决的问题之一。文章以内蒙古大兴安岭根河森林保护区为研究区,在 2 种空间分辨率(1m和 3m)下,使用样本点(样地对应像元的光谱值)与样本面(样地对应 3×3 窗口像元光谱平均值)2 种样本取值尺度,采用 3 种机器学习分类算法(神经网络(neural network,NN)、三维卷积神经网络(three dimensional convolution neural network,3DCNN)和支持向量机(support vector machines,SVM))对机载高光谱图像的森林优势树种识别能力进行了探讨。结果表明:①无论使用何种空间分辨率与样本取值尺度,3DCNN的分类精度最高,其总体精度和Kappa系数最高(最高分别为 95。42%和 0。94);②高空间分辨率更有利于优势树种识别,其比低空间分辨率(3m)总体精度最多可提高 30。97%,Kappa系数最多可提高 54。24%;③使用NN与SVM进行分类时,以样本面作为样本取值尺度进行树种识别的精度低于样本点。而在 3m空间分辨率情况下使用 3DCNN进行分类时,以样本面作为样本取值尺度进行树种识别的精度高于样本点。总的来说,空间分辨率、样本取值尺度与分类算法均对优势树种识别精度有不同程度的影响。在机载高光谱图像识别森林优势树种过程中,优先选择高空间分辨率影像,利用小样本数据,采取深度学习算法将会提高优势树种识别精度。
Identifying predominant tree species based on airborne hyperspectral images using machine learning algorithms
Identifying forest tree species can provide a valuable scientific reference for ascertaining forest resources.However,it is difficult to achieve accurate tree species classification even using hyperspectral data with high spatial resolution.Hence,there is an urgent need to meet this challenge.This study investigated the Genhe Forest Reserve in the Great Xing'an Range within Inner Mongolia.At spatial resolutions of 1 m and 3 m,two sample value scales were employed:sample points(i.e.,the spectral values of pixels corresponding to sample plots)and sample planes(i.e.,the average spectral values of pixels in a 3×3 window corresponding to sample plots).Then,this study explored the identification effects of predominant tree species using airborne hyperspectral images based on three machine learning algorithms:neural network(NN),three-dimensional convolution neural network(3DCNN),and support vector machine(SVM).Key findings include:① Regardless of spatial resolution and sample value scales,the 3DCNN exhibited the highest classification accuracy,yielding the highest overall accuracy and Kappa coefficient of 95.42%and 0.94,respectively;② Compared to a low spatial resolution(3 m),a high spatial resolution was more favorable to the identification of predominant tree species,with overall accuracy and Kappa coefficient increased by 30.97%and 54.24%at most,respectively;③ In the case of NN/SVM-based classification,sample points outperformed sample planes in improving the accuracy of tree species identification.In contrast,sample planes outperformed sample points for 3DCNN-based classification at a spatial resolution of 3 m.Overall,spatial resolution,sample value scales,and classification algorithms manifested varying degrees of effects on the identification accuracy of predominant tree species.High-spatial-resolution images,small-sample data,and deep-learning algorithms can be combined to enhance the accuracy of predominant tree species identification using airborne hyperspectral images.

hyperspectral dataidentification of predominant tree speciesspatial resolutionmultiscale sample

于航、谭炳香、沈明潭、贺晨瑞、黄逸飞

展开 >

中国林业科学研究院资源信息研究所,北京 100091

国家林业和草原局林业遥感与信息技术重点实验室,北京 100091

高光谱数据 优势树种识别 空间分辨率 多尺度样本

科技部科技基础资源调查专项子课题科技部科技基础资源调查专项子课题

2019FY2025012019FY202504

2024

自然资源遥感
中国国土资源航空物探遥感中心

自然资源遥感

CSTPCD北大核心
影响因子:1.275
ISSN:2097-034X
年,卷(期):2024.36(1)
  • 1
  • 41