首页|基于ICESat-2和Sentinel-2A数据的森林蓄积量反演

基于ICESat-2和Sentinel-2A数据的森林蓄积量反演

扫码查看
森林蓄积量是林业调查的重要指标,在衡量森林健康状况和评价森林固碳能力等方面发挥重要作用,协同主被动遥感是当前反演大区域森林蓄积量的主要手段.以云南香格里拉森林为研究区,分别提取ICESat-2/ATLAS和Sentinel-2A影像的特征变量,并通过相关性分析和共线性诊断方法筛选特征变量,构建Sentinel-2A变量集和ICESat-2/ATLAS变量集,以及二者联合的变量集,然后结合样地实测数据与 3 个特征变量集,采用逐步线性回归和随机森林方法分别建立线性和非线性回归模型,反演森林蓄积量,并对结果进行精度验证及对比分析.研究结果表明:对 3 个变量集,随机森林方法精度均优于逐步线性回归;ICESat-2/ATLAS变量集在 2 种回归方法下的反演精度均高于Sentinel-2A变量集;联合Sentinel-2A和ICESat-2/ATLAS变量集,随机森林方法的反演精度最高,其R2,RMSE和rRMSE分别为 0.703 4,84.78 m3/hm2和 36.46%.整体来说,与Sentinel-2A数据相比,基于ICESat-2/ATLAS数据及其与多源数据联合的反演模型均可以提高森林蓄积量反演精度和模型稳定性.
Forest stock volume inversion based on ICESat-2 and Sentinel-2A data
Forest stock volume(FSV),a critical indicator in forestry surveys,plays a significant role in evaluating the health and carbon sequestration capacity of forests.Cooperative inversion using active and passive remote sensing data is an essential method for FSV inversion of large areas.Focusing on forests in Shangri-La,Yunnan Province,this study extracted feature variables from ICESat-2/ATLAS and Sentinel-2A images and then screened them through correlation analysis and collinearity diagnostics.Using the selected feature variables,this study constructed a Sentinel-2A variable set,an ICESat-2/ATLAS variable set,and a combined variable set.Based on the measured data of sample sites and the three feature variable sets,this study built linear and nonlinear regression models for FSV inversion using stepwise linear regression and the random forest method,respectively.Finally,this study performed accuracy verification and comparative analysis of the results:① For the three variable sets,the random forest method yielded higher accuracy than the stepwise linear regression;② The ICESat-2/ATLAS variable set exhibited higher inversion accuracy than the Sentinel-2A variable set under both regression methods;③ Combining Sentinel-2A and ICESat-2/ATLAS variable sets,the random forest method yielded the highest inversion accuracy,with its coefficient of determination(R2),root mean square error(RMSE),and relative root mean square error(rRMSE)of 0.7034,84.78 m3/hm2,and 36.46%,respectively.Overall,compared to Sentinel-2A data,the inversion models based on ICESat-2/ATLAS data and multi-source remote sensing data can effectively improve the accuracy of FSV inversion and model stability.

forest stock volumefeature variablerandom forestmultiple regressionICESat-2/ATLASSentinel-2A

刘美艳、聂胜、王成、习晓环、程峰、冯宝坤

展开 >

云南师范大学地理学部,昆明 650500

中国科学院空天信息创新研究院数字地球重点实验室,北京 100094

森林蓄积量 特征变量 随机森林 多元回归 ICESat-2/ATLAS Sentinel-2A

广西自然科学基金创新研究团队项目湖湘高层次人才聚集工程—创新团队项目中国科学院青年创新促进会项目

2019GXNSFGA2450012019RS10602019130

2024

自然资源遥感
中国国土资源航空物探遥感中心

自然资源遥感

CSTPCD北大核心
影响因子:1.275
ISSN:2097-034X
年,卷(期):2024.36(1)
  • 26