首页|基于特征优选和时空融合算法的黄河三角洲湿地类别制图方法研究

基于特征优选和时空融合算法的黄河三角洲湿地类别制图方法研究

扫码查看
滨海湿地的遥感分类研究对于滨海湿地的保护和规划具有重要意义.为此,以黄河三角洲作为研究区,采用2019 年 3-10 月获取的 8 景Landsat8 OIL作为数据源,使用GEE(Google Earth Engine)云平台,根据影像的不同特征构建了 7 种不同的分类方案;然后,使用随机森林分类器对不同特征集合进行分类,并选择其中分类效果最好的用于绘制黄河三角洲地区的湿地类别图.其中 8,9 月份数据由于受到云的污染导致质量差,使用增强型自适应反射率时空融合模型(enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM)算法对有云区域进行填补处理.结果表明:①ESTARFM时空融合模型生成的预测影像与真实影像波段表现出较好的相关性,其 R 值均能达到 0.73 以上,说明重构的影像可以用于本研究;②使用随机森林算法对研究区地物类型进行分类,其中方案 7 通过特征优选,分类结果总体精度达 92.28%,Kappa系数达 0.91,分类结果与湿地实况相吻合,比常规方案分类精度更高.研究结果有助于了解和掌握该区域湿地不同类型的空间分布特征,可为区域生态环境的保护和规划提供科学依据.
A mapping methodology for wetland categories of the Yellow River Delta based on optimal feature selection and spatio-temporal fusion algorithm
Exploring the remote sensing-based classification of coastal wetlands is significant for their conservation and planning.Hence,this study investigated the Yellow River Delta with the 8-view Landsat8 OIL images from March to October 2019 as the data source.It constructed seven classification schemes based on different features of the images on the Google Earth Engine(GEE)cloud platform.Then,it employed the random forest classifier to classify different feature sets,with the scheme exhibiting the best classification effects selected for mapping the wetland categories of the Yellow River Delta.Considering poor data quality in August and September due to cloud contamination,this study filled in the cloudy zones using the enhanced spatial and temporal adaptive reflectance fusion model(ESTARFM)algorithm.The results show that:① The predicted images generated from the ESTARFM manifested a high correlation with the real image bands,with R values above 0.73,suggesting that the reconstructed images could be used in this study;② The random forest algorithm was used to classify the surface feature types in the study area.Through optimal feature selection,the classification results of Scheme 7 demonstrated an overall accuracy of 92.28%,higher than those of conventional schemes,with a Kappa coefficient of 0.91,aligning with the actual wetland conditions.The results of this study can assist in deeply understanding the spatial distributions of different wetlands in the area,and provide a scientific basis for the conservation and planning of the regional ecological environment.

Landsat8multitemporal dataYellow River Delta wetlandimage fusionGoogle Earth Engineran-dom forest

冯倩、张佳华、邓帆、吴贞江、赵恩灵、郑培鑫、韩杨

展开 >

长江大学地球科学学院,武汉 430100

中国科学院空天信息创新研究院中国科学院数字地球重点实验室,北京 100094

中国科学院大学地球与行星科学学院,北京 100049

Landsat8 多时相数据 黄河三角洲湿地 图像融合 Google Earth Engine 随机森林

山东省自然科学基金

ZR2020QF067

2024

自然资源遥感
中国国土资源航空物探遥感中心

自然资源遥感

CSTPCD北大核心
影响因子:1.275
ISSN:2097-034X
年,卷(期):2024.36(2)
  • 17