首页|深度语义分割网络无人机遥感松材线虫病变色木识别

深度语义分割网络无人机遥感松材线虫病变色木识别

扫码查看
松材线虫病是危害我国林业资源的主要病害,研究深度语义分割网络无人机遥感技术可提高松材线虫病变色木识别准确率,为提升和保护林业资源质量提供技术支撑.该文以青岛崂山松林为研究区,通过固定翼无人机航拍获取区域无人机松材线虫病疑似变色木影像,以全卷积网络(fully convolutional networks,FCN),U-Net,Deep-Lab V3+和OCNet 4种深度语义分割模型为研究对象,选用召回率(Recall)、精确率(Precision)、交并比(intersection over union,IoU)和F1值评估各模型分割精度.航拍飞行获得2 688张无人机影像,通过手动标记和样本扩增生成训练样本28 800个.4种网络均能够较好识别松材线虫病变色木,无显著误报,并且深度语义模型对颜色相近的地物,如岩石、黄色裸土等有较好的辨别结果.总体上,DeepLabV3+具有最高的变色木分割精度,IoU与F1值分别为0.711和0.829;FCN模型分割精度最低,IoU与F1值分别为0.699和0.812;DeepLabV3+训练耗时最低,达到27.2 ms/幅;FCN预测耗时最低,达到7.2 ms/幅,但分割变色木的边缘精度最低.以3种特征提取网络ResNet50,ResNet101和ResNet152为前端特征提取网络构建的DeepLabV3+模型变色木识别IoU值分别为0.711,0.702和0.702,F1值分别为0.829,0.822和0.820.DeepLabV3+比DeepLabV3网络具有更高的变色木识别精度,Deep-LabV3网络变色木识别的IoU和F1值分别为0.701和0.812.DeepLabV3+模型在测试数据中具有最高变色木识别精度,特征提取网络ResNet网络深度对变色木识别精度影响较小.DeepLabV3+引入的编码和解码结构能够显著改进DeepLabV3分割精度,同时可获得详细的分割边缘,更有利于松材线虫病变色木识别.
Identifying discolored trees inflected with pine wilt disease using DSSN-based UAV remote sensing
Pine wilt disease(PWD)is identified as a major disease endangering the forest resources in China.Investigating the deep semantic segmentation network(DSSN)-based unmanned aerial vehicle(UAV)remote sensing identification can improve the identification accuracy of discolored trees infected with PWD and provide technical support for the enhancement and protection of the forest resource quality.Focusing on the pine forest in Laoshan Mountain in Qingdao,this study obtained images of suspected discolored trees through aerial photography using a fixed-wing UAV.To examine four deep semantic segmentation models,namely fully convolutional network(FCN),U-Net,DeepLabV3+,and object context network(OCNet),this study assessed the segmentation accuracies of the four models using recall,precision,IoU,and F1 score.Based on the 2 688 images acquired,28 800 training samples were obtained through manual labeling and sample amplification.The results indicate that the four models can effectively identify the discolored trees infected with PWD,with no significant false alarms.Furthermore,these deep learning models efficiently distinguished between surface features with similar colors,such as rocks and yellow bare soils.Generally,DeeplabV3+outperformed the remaining three models,with an IoU of 0.711 and an F1 score of 0.711.In contrast,the FCN model exhibited the lowest segmentation accuracy,with an IoU of 0.699 and an F1 score of 0.812.DeeplabV3+proved the least time-consuming time for training,requiring merely 27.2 ms per image.Meanwhile,FCN was the least time-consuming in prediction,with only 7.2 ms needed per image.However,this model exhibited the lowest edge segmentation accuracy of discolored trees.Three DeepLabV3+models constructed using Resnet50,Resnet101,and Resnet152 as front-end feature extraction networks exhibited IoU of 0.711,0.702,and 0.702 and F1 scores of 0.829,0.822,and 0.820,respectively.DeepLabV3+surpassed DeepLabV3 in the identification accuracy of discolored trees,with the letter showing an IoU of 0.701 and an F1 score of 0.812.The train data revealed that DeepLabV3+exhibited the highest identification accuracy of the discolored trees,while the ResNet feature extraction network produced minor impacts on the identification accuracy.The encoding and decoding structures introduced by DeepLabV3+can significantly improve the segmentation accuracy of DeepLabV3,yielding more detailed edges.Therefore,DeepLabV3+is more favorable for the identification of discolored trees infected with PWD.

UAV remote sensingdiscolored treedeep learning

张瑞瑞、夏浪、陈立平、丁晨琛、郑爱春、胡新苗、伊铜川、陈梅香、陈天恩

展开 >

北京市农林科学院智能装备技术研究中心,北京 100097

国家农业智能装备工程技术研究中心,北京 100097

国家农业航空应用技术国际联合研究中心,北京 100097

南京市浦口区林业站,南京 211899

农芯(南京)智慧农业研究院有限公司,南京 211899

展开 >

无人机遥感 变色木 深度学习

国家重点研发计划项目南京市企业院士工作站关键核心技术攻关项目北京市农林科学院创新能力建设项目

2021YFD1400900KJCX20230205

2024

自然资源遥感
中国国土资源航空物探遥感中心

自然资源遥感

CSTPCD北大核心
影响因子:1.275
ISSN:2097-034X
年,卷(期):2024.36(3)