首页|ESA CCI土壤湿度资料在中国东部的综合评估

ESA CCI土壤湿度资料在中国东部的综合评估

扫码查看
卫星遥感的土壤湿度产品为研究区域尺度的气候变化、水文效应等提供了便利,然而由于观测标准不统一、仪器更迭等因素,长时间序列土壤湿度数据集在我国的验证和应用犹显不足.该文基于中国气象局农气数据集和国际土壤水分网络(international soil moisture network,ISMN)的土壤湿度资料,首先构建了 1981-2013年中国东部地区土壤湿度的月数据集;并在此基础上对比分析了同时间段欧洲航天局气候变化倡议项目(European apace agency climate change initiative,ESA CCI)的4种微波遥感土壤湿度产品(包括主动、被动、融合和校正的融合产品)在中国东部的表现能力.结果显示,主动产品和被动产品分别低估、高估了中国东部的土壤湿度,其中主动产品的最大偏差分布在华北和西北地区,相对偏差分别达到-30.9%和-29.6%,被动产品在东北和西北地区的相对偏差分别为39.1%和26.5%,融合产品可以很好地改进东北地区和西北地区主动产品低估、被动产品高估的现象,相对偏差分别减少到24.3%和3.7%.对区域平均的月土壤湿度的变化特征而言,主动产品和融合产品在江淮地区的表现最优,最高相关系数达0.66,被动产品和融合产品在东北地区的相关系数达0.44和0.47,华北地区和西北地区较差.通过对遥感产品方差来源进行分析,主动产品在描述土壤湿度的演变特征方面更具优势,被动产品在精度方面表现更优,融合产品在精度方面表现最佳.该文同时研究了 CCI集成卫星设备的更迭对产品表现的影响,结果表明,不同时间段的主动产品在东北和西北表现较一致,被动传感器在再现土壤湿度的变化特征方面还有一定的差距,融合产品的整体方差明显优于主动产品和被动产品,但是在相关系数方面,融合产品在东北和西北较主动产品基本相当.校正后的融合产品没有特别明显的改进,这在一定程度上证明了利用CCI融合产品进行长期研究的可行性.研究结果有助于更深刻地理解不同卫星产品数据集的误差结构和特性,为研究者挑选相应数据产品、以及进行长时间序列的研究提供了证据支持.
Comprehensive evaluation of ESA CCI soil moisture data in eastern China
Soil moisture products based on remote sensing are crucial for investigating climatic change and hydrological effects on a regional scale.However,there is a lack of verification and application of long-term soil moisture datasets in China due to factors such as inconsistent observation standards and instrument upgrades.Using the agro-meteorological dataset from the China Meteorological Administration and soil moisture data from the International Soil Moisture Network(ISMN),this study constructed a monthly dataset of soil moisture in eastern China covering the period from 1981 to 2013.Accordingly,this study analyzed and compared the performance of four microwave remote sensing-based soil moisture products developed by the European Space Agency's Climate Change Initiative(ESA CCI):active,passive,combined,and combined adjusted products.The results indicate that active and passive products underestimated and overestimated soil moisture in eastern China,respectively.The maximum deviations from active products were found in the northern and northwestern regions,with relative deviations of-30.9%and-29.6%,respectively.In contrast,the passive products showed relative deviations of 39.1%and 26.5%,respectively for soil moisture in northeastern and northwestern regions.The combined products mitigated the underestimation of the active products and the overestimation of the passive product in these regions,reducing the relative deviations to 24.3%and 3.7%,respectively.Regarding the variation characteristics of regional monthly average soil moisture,both the active and combined products performed best for soil moisture in the Yangtze-Huaihe(YH)region,with the highest correlation coefficient of 0.66.The passive and combined products yielded correlation coefficients of 0.44 and 0.47,respectively for soil moisture in the northeastern region and performed poorly for soil moisture in the northern and northwestern regions.The analysis of the variance sources of the remote sensing-based products indicates that the active products enjoyed more advantages in describing the evolutionary characteristics of soil moisture,the passive products demonstrated greater accuracy,and the combined products yielded the highest accuracy overall.Additionally,this study investigated the impacts of changes in the integrated satellite equipment of CCI on product performance.The results indicate that the active products exhibited consistent performance for soil moisture in the northeastern and northwestern regions in different periods.However,passive sensors still exhibited gaps in reproducing the variations in soil moisture.The combined products exhibited better overall variance than both active and passive products.However,these products yielded comparable correlation coefficients with the active products for soil moisture in the northeastern and northwestern regions.The combined products presented no notable improvement after correction,proving that it is feasible to conduct long-term research using the combined products of CCI.The results of this study contribute to a deeper understanding of the error structures and characteristics of various satellite product datasets,providing evidence for researchers to select appropriate data products and conduct research on long time series.

soil moisturesatellite remote sensinginstrument replacementlong time seriesESA CCIeastern Chinabreak-adjusted COMBINED productcomprehensive evaluation

凌肖露、陈朝荣、郭维栋、秦凯、张锦龙

展开 >

中国矿业大学环境与测绘学院,徐州 221116

江苏省煤基温室气体减排与资源化利用重点实验室,中国矿业大学,徐州 221008

青海师范大学地理科学学院,西宁 810008

南京大学大气科学学院,南京 210023

创亚普产业技术研究院,徐州 221116

展开 >

土壤湿度 卫星遥感 设备更替 长时间序列 ESA CCI 中国东部 突变检验和校正 综合评估

2024

自然资源遥感
中国国土资源航空物探遥感中心

自然资源遥感

CSTPCD北大核心
影响因子:1.275
ISSN:2097-034X
年,卷(期):2024.36(4)