首页|基于BDANet的地震灾害建筑物损毁评估

基于BDANet的地震灾害建筑物损毁评估

扫码查看
破坏性地震建筑物损毁快速评估是震后科学评估的决策依据与技术保障,对于人道主义救援和应急响应具有重要意义.鉴于现有遥感影像震后建筑物损毁大多基于灾前灾后图像分割来完成,对于震后建筑物数量难以快速统计,文章以U-Net深度卷积神经网络为主体模型,提出一种3阶段的BDANet(building damage assessment conv-olutional neural network)震后建筑物损毁信息评估与预测一体化网络框架.首先,利用U-Net的编码-解码网络结构提取建筑物位置信息;其次,通过灾前灾后影像训练建筑物损毁评估部分,对建筑物分割结果进行损毁定位与等级评估;最后,对不同等级的损毁建筑物数量进行预测,为灾后救援与灾后重建提供数据支撑.并以2017年墨西哥中部莫雷洛斯州发生的7.1级地震与2023年土耳其发生的7.8级地震为例展开研究,实验对震后建筑物损毁等级进行评估及统计,验证了该文方法的准确性与可靠性,相关实验结果可为灾后风险评估提供及时、准确的数据支撑和技术保障.
BDANet-based assessment of building damage from earthquake disasters
The rapid assessment of building damage following destructive earthquakes serves as a critical foundation for decision-making and technical guarantee in post-earthquake scientific evaluations,holding great significance in humanitarian aid and emergency response.This study aims to overcome the challenge in rapidly quantifying the number of buildings affected.Considering that most existing post-earthquake building damage assessments based on remote sensing images rely on pre-and post-disaster image segmentation,this study,by using the U-Net deep convolutional neural network as the main model,introduced a three-stage convolutional neural network for building damage assessment(BDA Net)framework that integrates assessment and prediction for post-earthquake building damage information.First,the encoder-decoder network structure of U-Net was used to extract building location information.Second,building damage was assessed using pre-and post-disaster images to localize and grade damage in the image segmentation results.Finally,the number of buildings damaged at various levels was predicted to support post-disaster rescue and reconstruction efforts.The study evaluated and quantified the levels of post-earthquake building damage in the M7.1 earthquake in Morelos State,central Mexico in 2017 and the M7.8 earthquake in Türkiye in 2023,confirming the accuracy and reliability of the proposed method.The experimental findings provide timely and precise data and technical support for post-disaster risk assessment.

remote sensing imageearthquake disasterbuilding damagedamage assessmentU-Net

赵金玲、黄健、梁梓君、赵学丹、靳涛、葛行行、魏晓燕、邵远征

展开 >

中国石油新疆油田分公司数据公司,克拉玛依 834000

云南省测绘资料档案馆(云南省基础地理信息中心),昆明 650034

武汉大学地球空间信息技术协同创新中心,武汉 430079

遥感影像 地震灾害 建筑物损毁 损毁评估 U-Net

2024

自然资源遥感
中国国土资源航空物探遥感中心

自然资源遥感

CSTPCD北大核心
影响因子:1.275
ISSN:2097-034X
年,卷(期):2024.36(4)