首页|深度卷积语义分割网络在农田遥感影像分类中的对比研究——以河套灌区为例

深度卷积语义分割网络在农田遥感影像分类中的对比研究——以河套灌区为例

扫码查看
在现代化农业生产管理中,不同类型作物的空间分布是重要的农情信息.从卫星遥感影像中识别农田种类,是获取该类信息的基本途径之一.虽然目前用户可选择的遥感影像地物识别算法较为丰富,但进行可靠的农田分类依旧具有一定的挑战性.该文选取了 3类具有代表性的深度卷积语义分割模型,包括UNet,ResUNet和SegNext,对比其在河套灌区高分二号遥感影像上的作物分类性能.在3类算法的框架内,共实现了 9种具有不同复杂度的模型,以分析各个网络结构在农田遥感影像作物分类中的性能差异,从而为后续的相关模型研究提供一些优化思路与实验基础.实验结果说明,具有6层网络结构的UNet取得了最高的总精度(88.74%),而6层SegNext的精度最差(84.33%);具有最高模型复杂度的是ResUNet,但对于研究数据集,这类算法的过拟合现象最为严重;在计算效率方面,ResUNet也显著低于另外2类算法.
A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification:A case study of the Hetao irrigation district
In the management of modern agriculture production,the spatial distribution of different crop types is identified as important information about agricultural conditions.Identifying crop types from satellite remote sensing imagery serves as a fundamental method for acquiring such information.Although there exist various algorithms for identifying surface features from remote sensing imagery,reliable farmland classification remains challenging.This study selected three representative semantic segmentation-orientated deep convolutional models,i.e.,UNet,ResUNet,and SegNext,and compared their performance in crop classification using remote sensing images of the Hetao irrigation district from the Gaofen-2 satellite.Using the three algorithms,nine network models with varying complexities were developed to analyze the differences in the performance of various network structures in classifying crops in farmland based on remote sensing imagery,thus providing optimization insights and an experimental basis for future research on relevant models.Experimental results indicate that the six-layer UNet achieved the highest identification accuracy(88.74%),while the six-layer SegNext yielded the lowest accuracy(84.33%).The ResUNet displayed the highest complexity but serious over-fitting with the dataset used in this study.Regarding computational efficiency,ResUNet was significantly less efficient than the other two model types.

deep convolutionsemantic segmentationcrop filed classificationHetao irrigation district

苏腾飞

展开 >

内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018

深度卷积 语义分割 农田分类 河套灌区

2024

自然资源遥感
中国国土资源航空物探遥感中心

自然资源遥感

CSTPCD北大核心
影响因子:1.275
ISSN:2097-034X
年,卷(期):2024.36(4)