首页|基于机器视觉的公路桥梁变形测量及安全预警

基于机器视觉的公路桥梁变形测量及安全预警

扫码查看
公路桥梁结构安全对交通安全运营和区域经济发展起到关键作用,但由于交通荷载的快速增加和复杂变化,桥梁结构变形及安全状况实时监测的需求日益凸显.然而,以接触式传感器为主的结构健康监测系统存在安装施工难、维护更换繁、需要中断交通等局限.为此,该文提出了一种基于机器视觉的非接触式变形测量系统,利用模板匹配和特征点识别方法,实现结构表面标记的识别和关键位置的位移提取,并通过实验室和现场试验对视觉方法的准确性和稳定性开展测试.此外,针对实际桥梁结构运营状况建立相匹配的有限元分析模型,通过动静力学试验设定多级预警阈值,进一步判定结构的安全状况.试验结果表明:① 所建立的视觉变形测量系统位移测量误差在5%以内,振动频率误差在1%以内;② 基于模板匹配和特征点识别的测量技术能够对结构自有特征进行识别,满足长期性变形监测的需求;③ 通过多工况下有限元分析,可以为结构长期位移监测设置预警阈值.
Deformation Measurement and Safety Warning of Highway Bridges Based on Machine Vision
The structural safety of highway bridges plays a crucial role in traffic safety operations and regional economic development.Due to the rapid increase and complex changes in traffic loads,the demand for real-time monitoring of bridge's structural deformation and safety conditions has been increasingly prominent.However,the structural health monitoring system,dominated by contact sensors,has limitations such as difficult installation and construction,complicated maintenance and replacement,and the need to interrupt traffic.To this end,a non-contact deformation measurement system based on machine vision was proposed.Template matching and feature point recognition methods were utilized to achieve recognition of structural surface markings and displacement extraction of key positions.The accuracy and stability of visual methods were tested through laboratory and on-site experiments.In addition,a corresponding finite element model was built for the actual operation status of the bridge structure,and the multi-level warning threshold was set through the dynamic and static mechanical experiments to further determine the safety status of the structure.The experimental results show as follows.① The displacement measurement error of the established visual deformation measurement system is within 5%,and the error of vibration frequency is within 1%;② Measurement techniques based on template matching and feature point recognition can recognize the inherent features of structures,and meet the needs of long-term deformation monitoring;③ Through finite element analysis under multiple working conditions,warning thresholds can be set for long-term displacement monitoring of structures.

highway bridgesmachine visionstructural dynamic displacementfinite element analysissafety analysis

苏子玥、杜文康、雷冬

展开 >

河海大学 力学与材料学院,江苏 南京 211100

河海大学 苏州研究院,江苏 苏州 215100

公路桥梁 机器视觉 结构动态位移 有限元分析 安全分析

国家自然科学基金资助项目江苏省研究生科研创新计划项目苏州市科技发展计划项目

12172120KYCX23_0660SYC2022080

2024

中外公路
长沙理工大学

中外公路

CSTPCD
影响因子:0.626
ISSN:1671-2579
年,卷(期):2024.44(5)
  • 13