首页|Friction-1D Transformer:用于沥青路面抗滑预测的一维VIT混合模型

Friction-1D Transformer:用于沥青路面抗滑预测的一维VIT混合模型

扫码查看
路面摩擦性能是公路安全的重要指标,它与路面纹理密切相关.针对不同噪声的路面纹理数据,该文提出了一套路面三维纹理数据去噪方法,该方法可以在去除噪声的同时保留纹理的局部特征.此外,该文还基于Vision Trans-former的设计理念,开发了Friction-1D Transformer抗滑预测模型,用于评估沥青路面的抗滑性能.与传统的卷积神经网络不同,Friction-1D Transformer利用位置编码结构和多头注意力机制,能够从一维纹理信号中提取沿行车方向的全局特征,从而实现对路面摩擦性能的准确预测.与随机森林(RF)、k近邻算法(k-NN)、深度残差网络(Resnet)和Vision Transformer(VIT)共4种模型进行对比分析后发现,Friction-1D Transformer具有更高的准确率和更快的训练速度,且其参数量仅为3 915 914.该研究验证了直接使用原始纹理数据进行训练并进行抗滑预测的可行性,所使用的模型结构有望推动路面抗滑性能测试技术的进一步发展.
Friction-1D Transformer:A 1D Vision Transformer Hybrid Model for Skid Resistance Prediction on Asphalt Pavements
The friction performance of road surfaces is an important indicator of highway safety,which is closely related to road texture.In this paper,a set of three-dimensional denoising methods for road texture data with different noise levels was proposed,which could effectively remove noise while preserving local texture features.In addition,a skid resistance prediction model named Friction-1D Transformer was developed based on the design concept of Vision Transformer(VIT)for skid resistance evaluation of asphalt pavements.Unlike traditional convolutional neural networks,the Friction-1D Transformer utilized positional encoding structures and multi-head attention mechanisms to extract global features from one-dimensional(1D)texture signals along the direction of vehicle movement,thus accurately predicting the friction performance of road surfaces.Comparative analysis with four other models,namely random forest(RF),k-nearest neighbor(k-NN),residual neural network(Resnet),and VIT,shows that Friction-1D Transformer has higher accuracy and faster training speed,with only 3 915 914 parameters.This research validates the feasibility of using raw texture data for training and skid resistance prediction,and the proposed model structure may facilitate the development of the testing technology for skid resistance of road surfaces.

road engineeringskid resistance evaluation modeltexture denoising

裴非飞、聂梓龙、许国敏、战友、龚先祁、艾长发、邓媛、姬峥云、王世法

展开 >

四川成绵苍巴高速公路有限责任公司,四川 成都 618206

西南交通大学,四川 成都 610031

道路工程 抗滑性能评价模型 纹理去噪

2024

中外公路
长沙理工大学

中外公路

CSTPCD
影响因子:0.626
ISSN:1671-2579
年,卷(期):2024.44(6)