首页|基于SEER数据库的肾乳头状细胞癌患者术后生存预测模型的开发和验证

基于SEER数据库的肾乳头状细胞癌患者术后生存预测模型的开发和验证

扫码查看
目的 构建并验证可以有效地预测乳头状肾细胞癌(pRCC)患者术后总生存期(OS)的列线图.方法 回顾性分析2004年至2015年SEER数据库中的1 075例pRCC患者的临床资料,将患者以7∶3的比例随机分配到训练队列(753例)和验证队列(322例)中,运用Cox回归分析和LASSO分析确定术后OS的预后影响因素并建立列线图.通过一致性指数(C-index)、受试者工作特征(ROC)曲线和校准曲线评估列线图的性能.结果 训练队列的肿瘤N分期患者多于验证队列,差异有统计学意义(P=0.024).Cox回归分析及LASSO分析结果显示,影响pRCC患者术后OS的独立危险因素包括首次确诊时的年龄、肿瘤的病理分级、TNM分期、术前和(或)术后是否行放疗以及肿瘤长径(均P<0.05).列线图的C-index及曲线下面积(AUC)表明其具有良好的预测能力.在建模队列及验证队列中,1、3、5年OS的校准曲线也与实际生存结果在很大程度上相符合.结论 本研究开发了用于预测pRCC患者术后长期生存的列线图.经过验证,证实了其对OS具有有效的预测能力,有助于评估pRCC患者的预后及长期生存情况.
Development and validation of postoperative survival prediction model for patients with renal papillary cell carcinoma based on SEER database
Objective To construct and validate a Nomogram that can effectively predict post-operative overall survival(OS)in patients with papillary renal cell carcinoma(pRCC).Methods The clinical data of 1 075 patients with pRCC from 2004 to 2015 in SEER database were retrospectively analyzed.These patients were first randomly assigned to the training cohort(753 cases)or the valida-tion cohort(322 cases)in a ratio of 7∶3.Cox regression analysis and LASSO analysis were used to determine the prognostic factors of OS,and the nomogram was established.The performance of nomo-gram was evaluated by C-index,receiver operating characteristic(ROC)curve and calibration curve.Results There were more patients with N stage tumor in the training cohort than in the verification co-hort,and the difference was statistically significant(P=0.024).Cox regression analysis and LASSO analysis showed that the independent risk factors for OS in pRCC patients included age at first diagno-sis,pathological grade of tumor,TNM stage,preoperative and/or postoperative radiotherapy,and tumor size(all P<0.05).The C-index and the area under the curve(AUC)of the nomogram showed that it had good predictive ability.The calibration curves of 1-year,3-year,and 5-year OS were also in good agreement with the actual survival results in both the modeling and validation cohorts.Conclu-sions This study developed a nomogram for predicting long-term survival after pRCC.After verifica-tion,it has been confirmed that it has an effective predictive ability for OS,which will help to evaluate the prognosis and long-term survival of patients with pRCC.

Kidney NeoplasmsSEER DatabasePrognostic Prediction Model

郭庆祥、朱嘉伟、李震、蒋磊、李帅帅、李海龙

展开 >

徐州医科大学附属医院泌尿外科,徐州 221000

肾肿瘤 SEER数据库 预后预测模型

江苏省六大人才高峰高层人才选拔培养资助计划江苏省博士后科研资助计划

WSW-0642021K447C

2024

国际泌尿系统杂志
中华医学会,湖南省医学会

国际泌尿系统杂志

CSTPCD
影响因子:0.414
ISSN:1673-4416
年,卷(期):2024.44(2)
  • 18