Network pharmacology analysis on Panacis Quinquefolii Radix-Acori Tatarinowii Rhizoma for diabetes encephalopathy and experimental verification of its anti-inflammatory mechanism
Objective To predict the mechanism of Panacis Quinquefolii Radix-Acori Tatarinowii Rhizoma(PQ-AT)in the treatment of diabetes encephalopathy(DE)using network pharmacology combined with molecular docking;To conduct experimental verification.Methods The active components and targets of PQ and AT were screened by TCMSP database.The GeneCards and Disgenet were used to collect DE related target genes.String database and Cytoscape software were used to structure PPI network and perform visualization analysis.The common targets were imported into Metascape platform for GO annotation and KEGG enrichment analysis.Molecular docking was used to verify the binding ability of active components to core targets.Rats were randomly divided into a blank group,a model group,and a low-dose group of PQ-AT(1.08 g/kg),a high-dose group of PQ-AT(2.16 g/kg),and a metformin group(0.18 g/kg)using a random number table.To establish the rat model of diabetes encephalopathy,intraperitoneal injection of streptozotocin was used in addition to the blank group.After a 12-week drug intervention,TNF-α and Cyclooxygenase-2(PTGS2)protein expression in the cerebral cortex of rats was detected using Western blot.Results A total of 26 active components in PQ-AT and 107 related targets of DE were obtained,mainly including TNF,JUN,and PTSG2,which were mainly concentrated in TNF signaling pathway,cancer and other signal pathways.Molecular docking showed that the main active components of PQ-AT had relatively stable binding activity with TNF-αand PTGS2.Western blot results shows that compared with the model group,the expressions of PTGS2 and TNF-α significantly decreased in each administration group(P<0.05 or P<0.01).Conclusion PQ-AT can act on TNF,CASP3,JUN,STAT3,PTGS2 and other core targets to regulate signal pathways such as TNF,and inhibit inflammatory reaction to achieve the effect of treating DE.