首页|基于FAERS数据库的阿普米司特风险信号挖掘与分析

基于FAERS数据库的阿普米司特风险信号挖掘与分析

扫码查看
目的 通过对美国食品药品管理局(FDA)不良事件报告系统(FAERS)挖掘阿普米司特的风险信号,为临床使用的安全性提供参考依据。方法 采用报告比值比法(ROR)和贝叶斯可信区间递进神经网络(BCPNN)对美国FAERS数据库中 2014 年第 1 季度—2023 年第 3 季度阿普米司特相关不良事件(ADE)进行数据挖掘和分析。结果 共检索出阿普米司特相关ADE报告 70 075 份,以女性病例(61。4%)为主,年龄主要集中 18~65 岁(34。6%);上报国家主要以美国(96。5%)为主;经筛选出阳性信号 70 个,涉及 12 个系统器官(SOC);挖掘出的信号提示阿普米司特相关ADE报告主要集中在胃肠系统疾病、各类神经系统疾病、精神病类、感染及侵染类疾病,频数发生较多的PT主要是腹泻、恶心、头痛、腹部不适等;信号较强的PT主要是紧张性头痛、腹泻、排便频率增加、粪便松软、腹部不适等;新的风险信号有 38 个,包括潜伏性结核、病毒性胃肠炎、耳部感染、上呼吸道充血、痛风等。结论 使用阿普米司特应在治疗期间,重点关注患者的胃肠道反应,同时评估患者的精神状况,监测有感染、肾脏不全功能患者的使用,以保证治疗的安全性。
Risk signal mining and analysis of apremilast based on database of FAERS
Objective The risk signals of apremilast were extracted from the Adverse Event Reporting System(FAERS)of the US Food and Drug Administration(FDA)to provide reference for the safety of clinical use.Methods Reporting Odds ratio method(ROR)and Bayesian confidence interval Progressive neural network(BCPNN)were used to conduct data mining and analysis of apremilast related adverse events(ADE)in the FAERS database from the first quarter of 2014 to the third quarter of 2023.Results A total of 70 075 ADE reports related to the apremilast were retrieved,the majority of patients were female(61.4% )and were concentrated between the ages of 18—65(34.6% ),with the main reporting countries being the United States(96.5% ).70 Positive signals were screened out,involving 12 systems and organs(SOC),mainly including gastrointestinal system diseases,nervous system disorders,psychiatric disorders,infections and infestations.The main PT that occur more frequently were diarrhea,nausea,headache,and abdominal discomfort,etc.The PT with high signal strength ranking included tension headaches,diarrhea,frequent bowel movements,faeces soft,abdominal discomfort and so on.38 New risk signals were found,including latent tuberculosis,gastroenteritis viral,ear infection,upper respiratory tract congestion and gout,etc.Conclusion During the use of apremilast,it is necessary to focus on the patient's gastrointestinal response and assess the patient's psychiatric status,as well as paying close attention to the patients with infection and renal insufficiency function,so as to guarantee the safety of treatment.

apremilastadverse drug eventsdata miningproportional imbalance methodlatent tuberculosisviral gastroenteritisear infection

梁海萍、吴君琳、陈丽丽、沈勇刚

展开 >

广东药科大学附属第一医院,广东 广州 510080

阿普米司特 药物不良事件 数据挖掘 比例失衡法 潜伏性结核 病毒性胃肠炎 耳部感染

2024

现代药物与临床
天津药物研究院,中国药学会

现代药物与临床

CSTPCD
影响因子:1.179
ISSN:1674-5515
年,卷(期):2024.39(1)
  • 3