首页|正交频分复用水声通信深度神经网络信道估计仿真实验设计

正交频分复用水声通信深度神经网络信道估计仿真实验设计

扫码查看
对于正交频分复用(OFDM)水声通信系统,最小二乘(LS)信道估计算法受噪声影响较大,最小均方误差(MMSE)算法需要信道的先验统计信息且计算量较大.针对上述问题,提出了一种基于深度神经网络(DNN)的信道估计算法.首先在接收端构建DNN模型,再采用Bellhop水声信道射线模型完成DNN模型的训练、验证、测试及修正,最后结合OFDM系统对上述DNN网络进行工作场景仿真实验设计,并与传统信道估计算法进行对比研究.试验结果表明:系统满足误码率小于 10-4 时,DNN算法能够比 LS算法下降 2 dB,比 MMSE算法下降 1.5 dB.提出的新方法将对传统OFDM水声通信系统信道估计相关问题进行优化整合,信道估计无需大量导频数据及信道先验统计信息,系统能及时建立非线性映射,具有少样本、快速收敛优势,对于节省系统存储资源及提高实时性具有重要意义.
Experimental Design of Deep Neural Network Channel Estimation Simulation for Orthogonal Frequency Division Multiplexing Underwater Acoustic Communication
For orthogonal frequency division multiplexing(OFDM)underwater acoustic communication system,the least squares(LS)channel estimation algorithm is greatly affected by noise,and the minimum mean square error(MMSE)algorithm needs the prior statistics of the channel and the calculation is large.To solve these problems,a channel estimation algorithm based on deep neural network(DNN)is proposed.First,the DNN model is constructed at the receiving end,and then the Bellhop underwater acoustic channel ray model is used to complete the training,verification,testing and correction of the DNN model.Finally,the working scene simulation experiment is designed with the OFDM system,and the comparison with the traditional channel estimation algorithm is conducted.The experimental results show that when the bit error rate is less than 10-4,DNN algorithm can reduce 2 dB compared with LS algorithm and 1.5 dB compared with MMSE algorithm.The new method proposed will optimize and integrate the channel estimation related problems of traditional OFDM underwater acoustic communication system.The channel estimation does not require mass pilot data and channel prior statistics information,and the system can establish nonlinear mapping in time,with advantages of less samples and fast convergence,which is of great significance for saving system storage resources and improving real-time performance.

Orthogonal Frequency Division MultiplexingUnderwater Acoustic CommunicationDeep Neural NetworkChannel Estimation

郭铁梁、林航宇、龚建源、陆荣福

展开 >

梧州学院 广西机器视觉与智能控制重点实验室,广西 梧州 543002

梧州学院 科学研究院,广西 梧州 543002

广西大学 计算机与电子信息学院,广西 南宁 530004

正交频分复用 水声通信 深度神经网络 信道估计

梧州市科学计划研究项目梧州学院重点科研博士基金项目2023年度广西教育科学"十四五"规划A类重点课题

2022020372022A0042023A069

2024

梧州学院学报
梧州学院

梧州学院学报

影响因子:0.291
ISSN:1673-8535
年,卷(期):2024.34(4)
  • 3