首页|一种融合粒子群算法的蝙蝠优化算法

一种融合粒子群算法的蝙蝠优化算法

扫码查看
针对基本蝙蝠算法(BA)在寻优后期存在搜索性能差,寻优精度低,处理误差大,易陷入局部最优及早熟等缺陷,提出一种融合粒子群算法进行局部搜索的蝙蝠优化算法.该算法在局部搜索中,嵌入粒子群算法生成备选最优蝙蝠,并与基本蝙蝠算法生成的随机蝙蝠进行再竞争的方式优化种群,丰富了种群的多样性,提高了算法的全局搜索能力和局部搜索能力.Matlab环境下的仿真结果表明,改进后算法(PSOBA)在收敛速度及精度上均有明显提高,处理维度更高,是解决复杂函数优化问题的一种有效方法.
An optimized bat algorithm based on particle swarm optimization
To solve the inefficient search problems of the traditional bat algorithm in the later part of optimization process,such as poor optimization, serious deviation, easily falling into local optimal solution,an optimized bat algorithm based on particle swarm algorithm is proposed for optimizing local search process.The presented algorithm can produce some alternative best-bat operators in local search process,which competes against the other bat operators,produced by the traditional bat algorithm,and then enrich the diversity of the operator population and improve searching ability. The simulation under Matlab environment show that the improved algorithm(PSOBA)can improve the convergence speed and precision obviously,and has higher processing dimension,thus provides an effective method to solve the problem of complex function optimization.

bat algorithmparticle swarm algorithmcompetitive mechanismfunction optimiza-tionlocal area deep-searching convergence speed

翁健高、李道丰、白琳、易向阳

展开 >

广西大学 计算机与电子信息学院,广西 南宁530004

蝙蝠算法 粒子群算法 竟争机制 函数优化 局部深度搜索 收敛速度

国家自然科学基金资助项目广西自然科学基金资助项目

616620042016GXNSFAA380215

2018

广西大学学报(自然科学版)
广西大学

广西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.767
ISSN:1001-7445
年,卷(期):2018.43(2)
  • 4
  • 10