首页|基于自动微分的桁架结构材料非线性分析

基于自动微分的桁架结构材料非线性分析

扫码查看
基于深度学习技术,提出一种基于自动微分技术的桁架结构材料非线性问题求解方案.以各杆件的位移参数作为优化变量,采用随机算法初始化杆件位移,并对结构荷载分段.在每个荷载段中,先通过几何关系由位移参数求得杆件的应变,并由材料的本构关系计算出各杆件的应力,由节点力平衡方程构建损失函数.为了使得损失函数最小,再结合自动微分技术,构建损失函数与节点位移的计算图,以快速求解损失函数关于结点位移的梯度.最后,根据梯度下降法对杆件位移进行迭代优化,直至满足收敛条件.以桁架结构作为研究对象,基于线性强化模型,求解了不同桁架的材料非线性问题,并将计算结果与有限元解进行对比.结果表明,此方案在弹塑性问题分析中的可行性,且求解结果具备较高的精度.
Material nonlinear analysis of truss structure based on automatic differentiation
Based on deep learning techniques,a solution is proposed for solving the material nonlinear problems of truss structures based on automatic differentiation technology.The displacement of each member is taken as the optimization variables,the member displacements are initialized with a random algorithm and the loads are divided into several sections.In each load section,the strains of the members are first calculated from the displacement parameters through the geometric relationships,and then the stresses of each member are determined using the constitutive relationships of material.The loss function is constructed based on the equilibrium equation of nodal force.To minimize the loss function,the automatic differentiation technique is employed to construct the computational diagram of the loss function with respect to nodal displacements,which realize efficient calculation of the gradient of the loss function.Finally,using the gradient descent method,the member displacements are iteratively optimized until the convergence criterion is met.Taking truss structures as the research object and using a linear reinforcement model,the material nonlinear problems of different trusses are solved.The computation results are compared with those of the finite element analysis,and the feasibility of the proposed method in the analysis of elastoplastic problems and its high accuracy is demonstrated.

deep learningautomatic differentiationgradient descent methodtruss structurematerial non-linearity

邓天牧、黄钟民、彭林欣

展开 >

广西大学土木建筑工程学院,广西南宁 530004

工程防灾与结构安全教育部重点实验室,广西南宁 530004

广西防灾减灾与工程安全重点实验室,广西南宁 530004

深度学习 自动微分 梯度下降法 桁架结构 材料非线性

国家自然科学基金国家重点研发计划

121620042019YFC1511103

2024

广西大学学报(自然科学版)
广西大学

广西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.767
ISSN:1001-7445
年,卷(期):2024.49(2)
  • 30