首页|基于深度学习的驾驶倾向性分类及辨识方法

基于深度学习的驾驶倾向性分类及辨识方法

扫码查看
为了进一步研究网联交通环境下驾驶人驾驶倾向性动态变化特性,提出一种基于深度学习的驾驶倾向性分类及辨识方法.首先提取车速、加速度标准差、车头时距等车辆运动状态参数,设计调查问卷;采用k均值聚类算法对驾驶倾向性初步分类,并校正车辆状态相关特征参数,然后建立一种考虑注意力(Attention)机制的双向长短时记忆神经网络(BiLSTM)驾驶倾向辨识模型,识别周围车辆的驾驶倾向性,最后搭建对照模型,比对模型识别精度.结果表明,考虑注意力(Attention)机制的双向长短时记忆神经网络(BiLSTM)模型辨识精度达89.74%.相较于支持向量机(SVM)模型和人工神经网络(ANN)模型,准确率进一步提升,可实现动态驾驶倾向性的精准高效识别.
Deep learning-based driver's driving propensity classification and identification method
In order to further investigate the dynamic change characteristics of drivers'driving propensity in the networked traffic environment,a deep learning-based driving propensity classification and identification method is proposed.Firstly,vehicle motion state parameters such as vehicle speed,acceleration standard deviation and headway time distance are extracted and a survey questionnaire is designed.A k-means clustering algorithm is used to initially classify driving propensity and correct vehicle state-related feature parameters,then a two-way long short-term memory neural network driving propensity recognition model considering attention mechanism is established to identify the driving propensity of surrounding vehicles.Finally,a control model is built to compare the recognition accuracy of the models.The results show that the recognition accuracy of the bi-directional long short-term memory network(BiLSTM)model considering the attention mechanism is 89.74%.Compared with the support vector machine(SVM)model and artificial neural network(ANN)model,the accuracy is further improved,which can realize the accurate and efficient recognition of dynamic driving tendency.

traffic engineeringdriving propensitydeep learningattention mechanismk-means clustering algorithm

杨玉凤、曲大义、兰添贺、王韬、宋慧

展开 >

青岛理工大学机械与汽车工程学院,山东青岛 266590

交通运输工程 驾驶倾向性 深度学习 注意力机制 k均值聚类算法

国家自然科学基金

52272311

2024

广西大学学报(自然科学版)
广西大学

广西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.767
ISSN:1001-7445
年,卷(期):2024.49(2)
  • 21