首页|基于多源数据融合的改进HMM拥堵评估模型

基于多源数据融合的改进HMM拥堵评估模型

扫码查看
针对交通流复杂的时空关联性以及自身的不确定性,为了准确评估路网通行能力并缓解交通拥堵问题,提出融合多源数据的改进隐马尔科夫模型,对交通拥堵态势进行评估.首先,引入多源数据观察特征,获得道路特征状态变量;然后,确定道路的状态参数,将交通流划分为4个状态;最后,使用改进韦尔奇算法考虑前n个时刻的历史数据,对隐马尔可夫模型进行参数估计和状态推断,获得改进后的模型.以深圳市某路段所在片区为例,对模型的有效性、适用性进行验证.结果表明:该方法准确性达到97.1%,相较于原始模型提高了 4.7%,能对路网状态进行有效评估.随着采样频率的改变,改进后的模型与基准模型最低准确率分别相差 9.8%、9.4%、9.7%.
Improved HMM congestion based on multi-source data fusion evaluation model
To precisely evaluate the capacity of the road network and resolve issues with traffic congestion,in response to the intricate spatial and temporal correlation of traffic flows and their own uncertainties,an improved hidden Markov model that fuses multi-source data is proposed to evaluate the traffic congestion dynamics.Firstly,the traffic flow data are feature extracted and multi-input observation features are introduced to obtain the road characteristic state variables.Then,the state parameters of the road are determined while the traffic flow is divided into four states.Ultimately,an enhanced Welch's algorithm is used to estimate parameters and infer the state of the hidden Markov model,utilizing historical data for the first n moments to produce the optimized model.The location where a road segment located in Shenzhen city is used as an example to confirm the model's validity and application.According to the research's findings,the approach can reliably assess the condition of the road network and has a high accuracy of almost 97%,which is 4.7%percentage points better than the unimproved model.The difference in minimum accuracy between the baseline model and the improved model was 9.4%,9.7%,and 9.8%,respectively,with the change in sampling frequency.

traffic engineeringtraffic condition assessmentmulti-source datahidden Markov model

何烜、黄艳国、杨仁峥、曾东红

展开 >

江西理工大学电气工程与自动化学院,江西赣州 341000

交通工程 交通状态评估 多源数据 隐马尔可夫模型

国家自然科学基金江西省教育厅科学技术研究项目

72061016GJJ170554

2024

广西大学学报(自然科学版)
广西大学

广西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.767
ISSN:1001-7445
年,卷(期):2024.49(2)
  • 18