首页|基于混合Gamma-Poisson分布模型的参数估计与异质性研究

基于混合Gamma-Poisson分布模型的参数估计与异质性研究

扫码查看
针对连续-离散型混合分布的参数估计方法较少,且大多存在高维矩阵求逆或估计效率较低等问题,本文考虑将最小-最大化(MM)算法以及组装分解技术应用在Gamma-Poisson混合分布的参数估计中,目的是将高维目标函数分离组装成一系列的低维函数的线性组合,有效地避开高维矩阵求逆的困难.模拟研究表明:MM算法及其组装分解在Gamma-Poisson混合分布模型参数估计中具有较强的准确性和稳定性.将Gamma-Poisson混合分布模型应用到比利时离婚期限数据中,发现Gamma-Poisson混合分布模型对这一组异质性的连续-离散型数据具有较好的拟合效果.
Parameter estimation and heterogeneity research based on mixed Gamma-Poisson distribution model
There are few parameter estimation methods for continuous-discrete mixed distribution,and most of them have the problem of inverse of high-dimensional matrix or low estimation efficiency.In this paper,the minorization-maximization(MM)algorithm and assembly decomposition technique are applied to parameter estimation of Gamma-Poisson mixed distribution.The purpose is to separate and assemble the high-dimensional objective function into a series of linear combinations of low-dimensional functions.Then the difficulty of finding the inverse of high dimensional matrix can be avoided effectively.A series of simulation studies show that MM algorithm and its assembly decomposition have strong accuracy and stability in parameter estimation of Gamma-Poisson mixed distribution model.Applying the Gamma-Poisson mixed distribution model to the data of divorce duration in Belgium,it is found that the Gamma-Poisson mixed distribution model has a good fitting effect on this set of heterogeneous continuous-discrete data.

Gamma-Poisson mixed distributionminorization-maximization algorithmheterogeneityBelgium divorce statisticsassembly and disassembly technique

赵雅梅、黄希芬

展开 >

云南师范大学数学学院,云南昆明 650000

Gamma-Poisson混合分布 最小-最大化算法 异质性 比利时离婚数据 组装分解技术

国家自然科学基金

12261108

2024

广西大学学报(自然科学版)
广西大学

广西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.767
ISSN:1001-7445
年,卷(期):2024.49(2)
  • 23