首页|基于区块链和联邦学习的运单准点预测算法

基于区块链和联邦学习的运单准点预测算法

扫码查看
为了克服平台之间数据分布差异性带来的训练结果不理想,提出了一种带客户端漂移控制的动量加速联邦学习算法,利用采集的运单数据对改进算法进行验证.实验结果表明:在不同的数据分布情况下,改进的联邦学习算法相较传统的联邦平均算法(FedAvg)在性能方面得到了提高,其中收敛速度最高提升36%,F1值最高提升5.7%.
A blockchain and federated learning based waybill on-time prediction algorithm
In order to overcome the unsatisfactory training results caused by differences in data distribution between platforms,a momentum-accelerated federated learning algorithm with client drift control was proposed.The improved algorithm was verified by the collected waybill data.Experiment results show that under different data distributions,the improved federated learning algorithm is improved in performance compared with the traditional federal average algorithm(FedAvg),among which the convergence speed is increased by up to 36%,and the F1 score is increased by up to 5.7%.

network freight platformon-time predictionblockchainfederated learningmomentum strategy

叶进、王柏棋、李晓欢、蒋祖平

展开 >

广西大学 计算机与电子信息学院,广西 南宁 530004

广西综合交通大数据研究院,广西南宁 530025

广西桂物智慧科技有限公司,广西南宁 530299

网络货运平台 准点预测 区块链 联邦学习 动量策略

广西重点研发计划项目

桂科AB21196059

2024

广西大学学报(自然科学版)
广西大学

广西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.767
ISSN:1001-7445
年,卷(期):2024.49(4)