首页|基于图像识别的开挖砂土含泥量快速检测技术

基于图像识别的开挖砂土含泥量快速检测技术

Rapid detection and identification technology for mud content in excavation sand of the Pinglu Canal

扫码查看
针对平陆运河开挖砂土工程量大、实验室检测含泥量的方法耗时长、操作复杂等问题,提出一种基于泥浆快速配置、拍照图像识别的砂土含泥量快速检测技术.通过取样、配置泥浆、定时沉降后拍摄样品图像,以提取测试区与黑白对比区的颜色特征为输入,含泥量作为输出,建立一个包含254组数据的数据库,利用人工神经网络进行含泥量预测训练、超参数的择优.最终测试集的预测结果与真实结果对比显示,该方法在低含泥量(10%以下)检测中具有较高的精度,误差在1%以内;对于高含泥量(10%~60%)检测平均误差在5%以内.这种技术简化了操作,提升了检测效率,可以在现场实时进行运输流向决策(直接资源化利用、洗砂后利用或堆填处置),显著提高施工效率.
In view of the issues of large excavation volumes in the current Pinglu Canal sand excavation project,the long time required for laboratory testing of mud content,and the complex procedures involved,a rapid detection technique for the mud content in sand was proposed,based on quick slurry preparation and image recognition.The method involves sampling,preparing the slurry and taking a timed image of the sample after sedimentation.The color features extracted from the test area and the black-and-white comparison area are used as inputs,with mud content as the output.A database of 254 data sets is established,with mud content as the output.Using artificial neural networks,mud content prediction training and hyperparameter optimization are carried out.The comparison between the prediction results of the test set and the actual results show that the method has high accuracy for detecting low mud content(below 10%),with an error within 1%.For high mud content detection,the average error is within 5%.This technique simplifies the process,improves detection efficiency,and enables real-time transportation flow decision-making on site(direct resource utilization,use after washing,or landfill disposal),significantly enhancing construction efficiency.

mud contentrapid detectionartificial neural networksmachine learning

杨汛、陈煜安、詹良通、李金龙

展开 >

广西大学土木建筑工程学院,广西南宁 530004

浙江大学岩土工程研究所,浙江 杭州 310058

含泥量 快速检测 人工神经网络 机器学习

2024

广西大学学报(自然科学版)
广西大学

广西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.767
ISSN:1001-7445
年,卷(期):2024.49(6)