首页|基于最佳阈值分割的激光焊点缺陷检测算法研究

基于最佳阈值分割的激光焊点缺陷检测算法研究

扫码查看
针对新能源汽车电池材料中传统焊接点质量检测方法存在效率低、漏检率高以及工作强度大等问题,基于最佳阈值分割设计了激光焊点缺陷检测算法。首先通过改进最大类间方差法将图像裁剪为多个小图像进行阈值分割,并基于最佳阈值对整体图像进行分割,解决了在物料背景明暗不定的情况下焊点难以精准提取的难题,提高了对焊点宽、高、面积的检测精度,并且有助于焊点位置偏移的检测;然后利用模板匹配法实现了对焊点形状和角度的检测;最后通过Halcon视觉软件进行了算法实现。结果表明:所提出的方法能够有效地解决焊点难以提取的问题,相较于局部方差法、自适应阈值法等其他方法具有较大的优势;在实际应用中,焊点检测通过率达到了98。55%,误判率为0,满足工业生产的需求。
Research on laser weld defect detection algorithm based on optimal threshold segmentation
In response to the problems of low efficiency,high missed detection rate,and high workload in traditional quality inspection methods for welding points in new energy vehicle battery materials,this paper proposes a laser welding point defect detection algorithm based on optimal threshold segmentation.By improving the maximum between-class variance method to crop the image into multiple small images for threshold segmentation,and based on the optimal threshold,the algorithm solves the challenge of accurately extracting welding points under unclear material background brightness.This algorithm improves the detection accuracy of the width,height,and area of the welding points,and also helps detect welding point position offsets.Finally,the detection of welding point shape and angle is achieved using template matching.The algorithm is implemented using Halcon vision software,and experimental results show that the proposed method effectively solves the problem of difficult extraction of welding points and has greater advantages over other methods such as local variance method and adaptive threshold method.In practical applications,the welding point detection pass rate reaches 98.55%with zero false positive rate,fully meeting the requirements of industrial production.

machine visionHalcondefect detectionthreshold splittingtemplate matching

周广众、潘盛辉、李镇楠

展开 >

广西科技大学 自动化学院,广西 柳州 545616

江苏力德尔电子信息技术有限公司,江苏 南通 226600

机器视觉 Halcon 缺陷检测 阈值分割 模板匹配

2025

广西科技大学学报
广西科技大学

广西科技大学学报

影响因子:0.519
ISSN:1004-6410
年,卷(期):2025.36(1)