首页|基于消费者行为的XGBoost分析与研究

基于消费者行为的XGBoost分析与研究

扫码查看
XGBoost(Extreme Gradient Boosting)是一种强大的机器学习算法,它在处理大规模数据集和复杂特征时表现出色。文章首先介绍了XGBoost算法的基本原理,然后详细讨论了如何将其应用于消费者行为分析,并使用了真实的消费者数据集,包括顾客标识、商品标识和顾客购买行为等多维度信息。通过构建XGBoost模型,其能够识别重要的特征,预测消费者购买意向,并提供个性化的推荐建议。此外,对于模型的性能评估和优化方法进行了一定程度的讨论,以确保其准确性和实用性。最后,通过总结该研究的主要发现,强调了基于消费者行为的XGBoost分析在市场营销和商业决策中的潜在应用。在深入挖掘消费者行为数据后,企业可以更好地满足客户需求,提高销售效率,实现可持续的竞争优势,并为利用机器学习技术来优化市场策略提供了有力支持。
XGBoost Analysis Based on Consumer Behavior
With the rapid development of the Internet and e-commerce,a large amount of consumer data has become available,which allows us to better understand consumer preferences and purchasing trends.XGBoost(Extreme Gradient Boosting)is a powerful machine learning algorithm that performs well when dealing with large data sets and complex features.This article first introduces the basic principles of the XGBoost algorithm,and then discusses in detail how to apply it to consumer behavior analysis.This paper uses real consumer data set,including multi-dimensional information such as customer identification,product identification and customer purchasing behavior.By building the XGBoost model,we are able to identify important features,predict consumer purchase intentions,and provide personalized recommendations.In addition,the performance evaluation and optimization methods of the model are discussed to ensure its accuracy and practicability.Finally,we summarize the main findings of this study,highlighting the potential applications of XGBoost analytics based on consumer behavior in marketing and business decisions.By digging deeper into consumer behavior data,businesses can better meet customer needs,improve sales efficiency,and achieve sustainable competitive advantage,and this research provides strong support for the use of machine learning techniques to optimize market strategies.

XGBoostConsumer behaviorMarketingBusiness decision

蔡鲲鹏、马莉娟

展开 >

阜阳师范大学 计算机与信息工程学院, 安徽 阜阳 236041

阜阳师范大学 历史文化与旅游学院,安徽 阜阳 236041

XGBoost 消费者行为 市场营销 商业决策

安徽省高校自然科学研究重点项目安徽省高校哲学社会科学研究重点项目

2023AH0504192023AH050369

2024

广西民族大学学报(自然科学版)
广西民族大学

广西民族大学学报(自然科学版)

影响因子:0.245
ISSN:1673-8462
年,卷(期):2024.30(1)
  • 10