首页|基于图像的植物病害识别研究进展

基于图像的植物病害识别研究进展

扫码查看
植物病害识别是植物病害防控中必不可少的环节和前提条件,研发高精度的病害识别技术已成为病害高效防控中的迫切需求。植物病害图像识别的研究始于 20 世纪 80 年代,在农业生产和植物保护方面发挥着重要作用,及时、精确地识别植物病害可以帮助人们鉴别病害种类,并采取相应的防治措施,减轻病害对农作物产量和质量的不良影响。本文在整理和总结现有国内外研究文献的基础上,从图像分割、特征提取、分类识别 3 个方面重点梳理植物病害图像识别技术。目前关于植物病害图像分割的方法主要从基于阈值、聚类、边缘和深度学习等技术进行分类,可分为固定阈值法和自适应阈值法。固定阈值法是人工根据目标和背景像素直方图的差异尝试不同的值,并选择适宜阈值以实现图像分割。自适应阈值法是基于固定阈值分割的原理,根据特定的规则借助计算机自动迭代获得阈值,最常用的是最大类间方差法(Otsu法),而基于综合粒子群算法(GCLPSO)的阈值分割法的分割效果优于其他同类算法,具有较好的收敛性和稳定性。在植物病害识别研究中,特征提取和分类识别是影响识别率的关键因素。特征提取即描述属性,获得病害信息,找出最有用的辨别特征。分类识别是在图像分割和特征提取的基础上,通过构建分类器实现病害的准确识别。将迁移学习、轻量型网络等方法运用到植物病害识别,研究设计出高识别精度的网络模型将会是智慧植保的未来发展方向。基于图像的植物病害识别能够为病害监测和病害防控提供更加科学、智能的支持,对全球粮食生产和农业可持续发展都具有重要意义。
Research Progress in Image-based Plant Disease Identification
Plant disease identification is an essential link and prerequisite in plant disease pre-vention and control,and the development of high-precision disease identification technology has be-come an urgent requirement in efficient disease prevention and control.Plant disease image identifi-cation research began in the 1980s,which plays a crucial role in agricultural production and plant protection.Timely and accurately identification of plant diseases can assist in distinguishing disease types and implementing corresponding preventive measures,thereby alleviating the adverse effects of diseases on crop yield and quality.Based on the compilation and summary of existing domestic and international research literature,this article focused on plant disease image identification technol-ogy from three aspects:image segmentation,feature extraction,and classification identification.It also provided an outlook on the future development of plant disease identification.At present,the methods of image segmentation of plant diseases are mainly based on threshold,clustering,edge and deep learning techniques,which can be divided into fixed threshold method and adaptive threshold method.The fixed threshold method is to manually try different values based on the difference be-tween the target and the background pixel histogram,and select the appropriate threshold value to achieve image segmentation.Adaptive threshold method is based on the principle of fixed threshold segmentation.According to specific rules,the threshold is obtained by automatic iteration of com-puter.The most common one is the maximum inter-class variance method(Otsu method),while the segmentation effect of the threshold segmentation method based on GCLPSO is better than that of other similar algorithms,with good convergence and stability.In the plant disease identification re-search,feature extraction and classification identification are the key factors affecting the identifica-tion rate.Feature extraction is to describe the attributes,obtain the disease information,and find out the most useful discrimination features.Classification recognition is based on image segmentation and feature extraction,through the construction of classifiers.The future development direction of in-telligent plant protection is to apply the methods of transfer learning and lightweight network to plant disease identification,and to study and design a network model with high identification accu-racy.Image-based plant disease identification could offer more scientific and intelligent support for disease monitoring and prevention,holding significant importance for global food production and sustainable agricultural development.

Plant diseaseimage segmentationfeature extractiondisease identification

余敏、李丰兵、祝光湖、宋修鹏、王泽平、张小秋、雷敬超、黄海荣、黄伟华、陈潇航、黄冬梅、李秋芳、颜梅新

展开 >

桂林电子科技大学数学与计算科学学院,广西桂林 541004

广西壮族自治区农业科学院甘蔗研究所/农业农村部广西甘蔗生物技术与遗传改良重点实验室/广西甘蔗遗传改良重点实验室,广西南宁 530007

百色市农业科学研究所,广西百色 533612

植物病害 图像分割 特征提取 病害识别

2024

农业研究与应用
广西热带作物学会 广西亚热带作物研究所

农业研究与应用

影响因子:0.366
ISSN:2095-0764
年,卷(期):2024.37(3)