首页|二阶隐式微分方程周期边值问题的上下解与迭合度

二阶隐式微分方程周期边值问题的上下解与迭合度

Upper and lower solutions of second order implicit differential equation with periodic boundary value problems and coincidence degree

扫码查看
利用上下解方法和迭合度理论,讨论了二阶隐式微分方程周期边值问题{x"(t) =f(t,x(t),x"(t)),t ∈ [0,2π]x(0) =x(2π),x'(0) =x'(2π)解的存在性,其中f:[0,2丌]×R2→R连续,获得了至少存在一个解的充分条件,并通过实例验证了结果的有效性.
By using upper and lower solutions method and coincidence degree theory,the existence of solutions for a second-order implicit differential equation with periodic boundary value problems x"(t) =f(t,x(t),x"(t)),t ∈ [0,2π],x(0) =x(2π),x'(0) =x'(2π)is discussed,where f:[0,2r] × R2 → R is continuous.An existence result that there is at least one solution is obtained.The effectiveness of the result is proved by using an example.

implicit differential equationsperiodic boundary value problemlower and upper solutionscoincidence degreeexistence

王丽、刘永莉、李永军、霍锦霞

展开 >

兰州城市学院数学学院,甘肃兰州730070

隐式微分方程 周期边值问题 上下解 迭合度 存在性

11261027 11161026

2013

高校应用数学学报
浙江大学 中国工业与应用数学学会

高校应用数学学报

CSTPCDCSCD北大核心
影响因子:0.396
ISSN:1000-4424
年,卷(期):2013.28(3)
  • 2
  • 10