首页|基于经验似然方法对分位数相关系数的区间估计

基于经验似然方法对分位数相关系数的区间估计

扫码查看
分位数相关系数是一种度量两个随机变量之间线性相关关系的非对称相关系数,在统计,金融,化学等领域的特征选择问题中都扮演着重要的作用.同时,经验似然作为一种非参数方法,被广泛应用于各类模型的统计推断问题.对于任意两个随机变量,从分位数相关系数的定义出发,建立估计方程,引入代入经验似然方法(PEL)和其修正版本(APEL),分别得到渐近规则化的卡方分布和标准卡方分布,从而得到分位数相关系数的区间估计.数值模拟部分从覆盖概率,置信区间长度和基于区间得分的平均损失三方面比较了两种基于经验似然的方法同其他已有方法的效果.实证分析部分将提出的方法应用于一项来自福布斯排行榜的数据集.
Empirical likelihood based interval estimation of quantile correlation
Quantile correlation is an asymmetric correlation coefficient describing the linear relationships between two random variables.It plays a vital role in feature screening problems in many subjects such as Statistics,Finance,and Chemistry.Besides,empirical likelihood is a famous non-parametric method that is widely used in the statistical inference of several models.In this paper,the estimation equation is firstly established from the definition of the quantile correlation of any two random variables,then two proposed methods,plug-in empirical likelihood(PEL)and its adjusted version(APEL),are introduced to make interval estimation with establishing asymptotic scaled chi-squared distribution and standard chi-squared distribution,respectively.Simulation studies compare these two empirical likelihood-based methods with other methods in terms of coverage probability,interval length,and the average loss based on interval score.A real data set from Forbes magazine is adopted in the application to illustrate the presented methods.

quantile correlationempirical likelihoodinterval estimation

唐松乔、李康强、李翔、张立新

展开 >

浙江大学数学科学学院,浙江杭州 310058

分位数相关系数 经验似然 区间估计

国家自然科学基金国家自然科学基金

U23A206412031005

2024

高校应用数学学报
浙江大学 中国工业与应用数学学会

高校应用数学学报

CSTPCD北大核心
影响因子:0.396
ISSN:1000-4424
年,卷(期):2024.39(1)
  • 24