首页|带有偏正态误差的众数回归模型最大似然估计的EM算法

带有偏正态误差的众数回归模型最大似然估计的EM算法

扫码查看
经典的多元线性回归模型要求残差满足高斯-马尔柯夫假设(G-M),在实际生活中由于数据的随机性往往很难满足这个条件.利用Sahu等在2003年提出的偏正态分布来拓展经典的回归模型,给出了偏正态分布众数的近似表达式,建立了偏正态分布下均值和众数多元线性回归模型.在求解模型的参数估计时使用偏正态分布的分层表示构造EM算法.在M步统一给出两点步长梯度下降算法,同时也对均值模型给出显示迭代表达式.最后通过模拟分析以及实例来讨论两种回归模型的可行性.
Parameter estimates for mean and mode regression models with skew-normal errors
The classic multivariate linear regression model requires the residuals to meet the Gauss-Markov Conditions(G-M),which is often difficult to meet in real life due to the randomness of the data.Using the skew-normal distribution proposed by Sahu in 2003 to expand the classical regression model,the approximate expression of the mode is given under the skew-normal distribution,and the multivariate linear regression models of the mean and mode are established under the skew-normal distribution.In order to estimate the unknown parameters of the model,the EM algorithm is constructed by using the hierarchical representation of the skew-normal distribution.The two-point step gradient descent algorithm is uniformly given in M step,and the explicit iteration expression is also given for the mean regression model.Finally,the feasibility of the two regression models is discussed through simulation studies and examples analysis.

skew-normal distributionmode regression modelmean regression modelGauss-Markov conditionsEM algorithm

姜喆、王丹璐、吴刘仓

展开 >

昆明理工大学理学院,云南昆明 650500

昆明理工大学应用统计学研究中心,云南昆明 650500

偏正态分布 众数回归模型 均值回归模型 高斯-马尔柯夫假设 EM算法

国家自然科学基金昆明理工大学哲学社会科学科研创新团队项目昆明理工大学学术科技创新基金

12261051CXTD202300502022KJ150

2024

高校应用数学学报
浙江大学 中国工业与应用数学学会

高校应用数学学报

CSTPCD北大核心
影响因子:0.396
ISSN:1000-4424
年,卷(期):2024.39(2)
  • 20