首页|求解双层规划问题的松弛序列二次规划方法

求解双层规划问题的松弛序列二次规划方法

扫码查看
考虑一类具有特殊结构的双层规划问题,其下层问题为凸问题.首先通过内点罚方法将下层的约束函数惩罚到目标函数,使得下层问题近似为一系列无约束优化问题.然后使用KKT条件替换无约束的下层问题的最优解集,那么双层规划问题被一系列松弛的单层问题近似.文中设计了一种光滑的序列二次规划算法求解该松弛问题,并证明了当罚因子趋近于0时,该算法生成的迭代点列收敛到双层规划问题的弱稳定点.数值实验验证了算法的可行性.
A relaxed sequence quadratic programming method for solving bilevel programming problems
This article considers a class of bilevel programming problems with a special structure,where the lower-level problems are convex problems.First,the constraint function of the lower-level problem is penalized to the objective function by the interior point penalty method,so that the lower-level problem is approximated as a series of unconstrained optimiza-tion problems.Then the optimal set of solutions of the unconstrained lower-level problems is replaced by the KKT condition,and then the bilevel programming problem is approximated by a series of relaxed single-level problems.This article designs a smooth sequential quadratic programming algorithm to solve the relaxation problem and show that the iteration sequence generated by the algorithm converges to the weakly stationary point of the bilevel program-ming problem when the penalty factor converges to zero.The numerical experiments verify the feasibility of the algorithm.

bilevel programTikhonov-regularized interior-penaltysequential quadratic programming algorithm

杜梦琪、徐梦薇、段庆松

展开 >

河北工业大学理学院,天津 300401

中银金融科技有限公司智能风控中心,上海 200120

双层规划 Tikhonov-regularized interior-penalty 序列二次规划方法

国家自然科学基金国家自然科学基金河北省自然科学基金

1190155612071342A2020202030

2024

高校应用数学学报
浙江大学 中国工业与应用数学学会

高校应用数学学报

CSTPCD北大核心
影响因子:0.396
ISSN:1000-4424
年,卷(期):2024.39(2)
  • 34