首页|基于神经网络的拓扑与打印方向同步优化

基于神经网络的拓扑与打印方向同步优化

扫码查看
三维打印能够制造复杂的结构,并广泛应用于航空,工业,医学等诸多行业,但它也存在着一些局限性.而拓扑优化方法是在空间内寻求最佳的材料分布,从而使用更少的材料实现更轻的部件与同样的性能.近年来,三维打印结合拓扑优化的方法受到了广泛关注.众所周知,零件的打印方向会影响打印效果,并与拓扑结构,支撑体积等方面具有密切关系.鉴于此,文中提出了一种基于神经网络的打印方向优化框架.为了验证算法的可行性,根据结构柔度与所需支撑体积构造可微的损失函数,并使用人工神经网络同时对结构拓扑与打印方向进行优化.通过在二维和三维上的大量实验证明,方向优化可以在保证柔度变化不大的情况下显著减少支撑体积数量,降低打印成本.
Concurrent topology and build orientation optimization based on neural network
3D printing can produce complex structures and has been widely used in various industries such as aviation,industrial manufacturing,and medicine.However,it also has certain limitations.Topology optimization is a method that seeks the best material distribution in space to achieve lighter components with the same performance using less material.In recent years,the combination of 3D printing and topology optimization has attracted widespread attention.It has been shown that the printing direction of a part can significantly affect printing quality and is closely related to its topology structure and required support volume.To address this problem,a concurrent topology and build orientation optimization framework based on the artificial neural network(ANN)is proposed in this paper.The feasibility of the framework is validated on supporting structures.To achieve the objective,a differentiable loss function is constructed based on structural compliance and the required support volume,and then concurrently optimizes structural topology and build orientation.The proposed framework has been tested on various problems in both 2D and 3D domains,which demonstrate that the proposed framework can significantly reduce the required support volume while maintaining a similar level of structural compliance,thus reducing printing costs.

3D printingtopology optimizationbuild orientationneural networksupport struc-ture

王伟明、李孟原、李姗

展开 >

大连理工大学数学科学学院,辽宁大连 116024

三维打印 拓扑优化 打印方向 神经网络 支撑结构

国家自然科学基金辽宁省自然科学基金

621720732021-MS-110

2024

高校应用数学学报
浙江大学 中国工业与应用数学学会

高校应用数学学报

CSTPCD北大核心
影响因子:0.396
ISSN:1000-4424
年,卷(期):2024.39(3)