首页|q-Baskakov 曲线

q-Baskakov 曲线

扫码查看
近年来,一类基于q-微积分的广义Baskakov算子得到广泛研究,为构造新的曲线提供了理论依据.在Aral与Gupta(2011)定义的q-Baskakov算子中提取出q-Baskakov基函数,研究得到它的性质,如非负性、单位分解性、单峰性等.由于固定次数的q-Baskakov基函数有无限多个,为避免所构造的曲线无法插值它的控制多边形末端点,给出q-Baskakov曲线的截断定义,并证明截断的q-Baskakov曲线具有几何不变性、仿射不变性、凸包性等优良性质.在形状控制方面,文中给出的实例显示了q-Baskakov曲线在造型中的实际应用,很好地模拟控制多边形的形状,并且形状参数可从整体对曲线形状进行控制,从而进一步补充和完善了曲线造型理论.
q-Baskakov curves
In recent years,a class of generalized Baskakov operators based on q-calculus has been widely studied,which just provides a theoretical basis for constructing new curves.In this paper,q-Baskakov bases function is extracted from q-Baskakov operator defined by Aral and Gupta.Some basic properties and identities of the q-Baskakov bases such as non-negativity,partition of unity,unimodality and so on,are studied.Since there are infinite q-Baskakov bases of fixed degree,in order to avoid that the constructed curve cannot interpolate the end points of its control polygon,the truncated of q-Baskakov curve is given,and proved that the truncated q-Baskakov curve has excellent properties such as geometric invariance,affine invariance and convex hull property.In the aspect of shape control,the ex-ample shows the practical application of q-Baskakov curve in modeling.The shape of polygon can be simulated and controlled well,and the shape parameters can control the shape of curve from the whole,thus further supplementing and perfecting the curve modeling theory.

q-calculusq-Baskakov basesq-Baskakov curvecurve modeling

董美娟、刘国芬、解滨、韩力文

展开 >

河北师范大学数学科学学院,河北石家庄 050024

河北省计算数学与应用重点实验室,河北石家庄 050024

河北师范大学计算机与网络空间安全学院,河北石家庄 050024

河北省数学与交叉科学国际联合研究中心,河北石家庄 050024

展开 >

q-微积分 q-Baskakov基函数 q-Baskakov曲线 曲线造型

2024

高校应用数学学报
浙江大学 中国工业与应用数学学会

高校应用数学学报

CSTPCD北大核心
影响因子:0.396
ISSN:1000-4424
年,卷(期):2024.39(4)