首页|改造的Catmull-Rom插值基函数及其逼近性质

改造的Catmull-Rom插值基函数及其逼近性质

扫码查看
此文利用多项式再生性和局部支撑性对著名的Catmull-Rom插值基函数进行改造,获得新的插值基函数,生成新的插值算子,并求得新插值算子精确的Lebesgue常数,估计了其逼近连续函数的收敛速度,理论和数值例子都表明新插值算子的逼近效果优于其他各类插值算子.
Remould Catmull-Rom interpolation basis functions and approximative properties
The paper utilizes polynomial reproducibility and local support to modify the famous Catmull Rom interpolation basis function,obtaining new interpolation basis functions,generating new interpolation operators,and also obtaining the precise Lebesgue constant of the new interpolation operator.The convergence speed of the new interpolation operator approaching continuous functions is estimated,and both theoretical and numerical examples show that the approximation effect of the new interpolation operator is better than other types of interpolation operators.

interpolationmodulus of continuityapproximation errorLebesgue constantbasis functions

刘星、章仁江

展开 >

浙江工商大学统计与数学学院,浙江 杭州 310018

插值 连续模 逼近误差 Lebesgue常数 基函数

2024

高校应用数学学报
浙江大学 中国工业与应用数学学会

高校应用数学学报

CSTPCD北大核心
影响因子:0.396
ISSN:1000-4424
年,卷(期):2024.39(4)