首页|非线性时滞微分方程解的性质

非线性时滞微分方程解的性质

扫码查看
设ω1,…,ωt为互相判别的非零复常数,H0(z),…,Ht(z)为亚纯函数.该文研究了 Tumura-Cluine型非线性时滞微分方程fn(z)+P(z,f)=H0(z)+H1(z)eω1zq+…+Ht(z)ωtzq亚纯解的零点分布和增长性,这里n(≥ 2),t,q ∈ N+,P(z,f)为时滞微分单项式.利用角域上指数多项式的性质,该文还考虑了上面方程整函数解Julia集的径向分布,并给出了相应极限方向测度的下界估计.
On the properties of solutions to nonlinear delay differential equations
Let ω1,…,ωt be distinct nonzero complex numbers,H0(z),…,Ht(z)be meromor-phic functions.In this paper,the zero distribution and growth of meromorphic solutions of the Tumura-Cluine type nonlinear delay differential equation fn(z)+P(z,f)=H0(z)+H1(z)eω1zq+…+Ht(z)eωtzq are studied,where n(≥ 2),t,q ∈ N+and P(z,f)is a delay differential monomial.Using the properties of exponential polynomials in the angular domain,it also considers the radial distribution of Julia sets of entire solutions to the above equation,and the lower bound estimates of the measure of related limiting directions are verified.

delay differential equationgrowthzero distributionradial distributionmeasure

孙合庆、李叶舟、牛文潇

展开 >

北京邮电大学理学院,北京 100876

时滞微分方程 增长性 零点分布 径向分布 测度

2024

高校应用数学学报
浙江大学 中国工业与应用数学学会

高校应用数学学报

CSTPCD北大核心
影响因子:0.396
ISSN:1000-4424
年,卷(期):2024.39(4)