首页|广义Morrey-Banach空间上双线性分数次积分算子及其交换子的估计

广义Morrey-Banach空间上双线性分数次积分算子及其交换子的估计

扫码查看
该文讨论了双线性分数次积分算子Bα及其交换子Bα,b1,b2在广义Morrey-Banach空间Mu(X)上的有界性.在假设Lebesgue可测函数u满足某些特定的条件下,证明了Bα是从乘积空间Mu1(X1)×Mu2(X2)到空间Mu(Y)有界的.进一步,证明了由b1,b2 ∈ BMO(X)和Bα生成的交换子Bα,b1,b2是从乘积空间Mu1(X1)× Mu2(X2)到空间Mu(Y)有界的,其中u1u2=u.
Estimate for bilinear fractional integral operator and its commutator on generalized Morrey-Banach spaces
In this paper,the authors mainly discuss the boundedness of bilinear fractional inte-gral operator Bα and its commutator Bα,b1,b2 on generalized Morrey-Banach spaces Mu(X).Under assumption that the Lebesgue measurable function u satisfies some certain conditions,the anthors prove bilinear fractional integral operator Bα is bounded from product spaces Mu1(Xi)× Mu2(X2)into spaces Mu(Y).Further,the paper also proves that the commutator Bα,b1,b2 generated by b1,b2 ∈ BMO(X)and Bα are bounded from product spaces Mu1(X1)×Mu2(X2)into spaces Mu(Y),where u1u2=u.

generalized Morrey-Banach spacesbilinear fractional integration operatorscommu-tatorspaces BMO(X)boundedness

李雪梅、逯光辉

展开 >

西北师范大学数学与统计学院,甘肃兰州 730070

广义Morrey-Banach空间 双线性分数次积分算子 交换子 BMO(Rn)空间 有界性

2024

高校应用数学学报
浙江大学 中国工业与应用数学学会

高校应用数学学报

CSTPCD北大核心
影响因子:0.396
ISSN:1000-4424
年,卷(期):2024.39(4)