首页|基于EEMD-HW-GBDT模型的零售商品销量多步预测

基于EEMD-HW-GBDT模型的零售商品销量多步预测

扫码查看
零售商品库存控制单位(stock keeping unit,SKU)级别的销量时间序列具有较强的非平稳性和非线性,其多步预测困难.为了解决上述问题,提出了一种基于集合经验模态分解(ensem-ble empirical mode decomposition,EEMD)、霍尔特-温特斯(Holt-Winters,HW)以及梯度提升树(gradient boosting decision tree,GBDT)的销量预测模型.该模型分为3个阶段:第1阶段利用HW模型进行区域-全商品层级销量预测,并通过移动平均比例法得到SKU级别预测结果;第2阶段利用EEMD处理原始时间序列和HW模型产生的预测值序列以降低数据的非平稳性及拓展输入特征;第3阶段集成基于HW预测分量和内外部特征构建的多个梯度提升树,得到预测结果.采用国内某零售企业的销售数据进行验证.结果表明,EEMD-HW-GBDT模型对零售商品销量多步预测问题具有良好的预测性能,在MAE、RMSE和WMAPE指标方面均优于其他7个基准对比模型.
Multi-step Sales Forecasting of Retail Merchandise Based on EEMD-HW-GBDT Model
SKU-level time series of retail merchandise sales have strong non-stationarity and nonlinearity,so the multi-step sales forecast is difficult.To solve the above problems,a novel sales forecast model based on ensemble empirical mode decomposition(EEMD),Holt-Winters(HW)and gradient boosting decision tree(GBDT)was proposed.The model was divided into three stages.Region-all SKU level sales were predicted by the HW model in the first stage,and.the prediction results were allocated to SKU-level through the ratio-to-moving-average method.Then EEMD was used to process the original time series and the HW predicted value series to reduce the non-stationarity of the data and expand the input features.The final stage was to integrate multiple GBDTs based on HW prediction components,and internal and external features to obtain prediction results.The sales data from a domestic retail company were used for verification.The results show that the EEMD-HW-GBDT model has good predictive performance for multi-step sales forecast of retail merchandise.It is better than seven benchmark forecating models in terms of MAE,RMSE and WMAPE.

sales forecastmulti-step sales forecastHWEEMDGBDT

霍佳震、徐骏、陈铭洲

展开 >

同济大学经济与管理学院,上海 200092

销量预测 多步预测 EEMD HW GBDT

国家自然科学基金

M-310

2024

工业工程与管理
上海交通大学

工业工程与管理

CSTPCD北大核心
影响因子:0.763
ISSN:1007-5429
年,卷(期):2024.29(1)
  • 26