首页|基于图论的AGV数量配置与调度优化方法

基于图论的AGV数量配置与调度优化方法

扫码查看
为了提高无人仓库的自动引导车(automated guided vehicle,AGV)系统运行效率,研究了大规模场景下无人仓库的AGV数量配置与调度问题.以最小化AGV数量和AGV总运输成本为目标,抽象出任务之间的时空约束来构建AGV共享网络,将数量配置与调度优化问题转化成图论当中的加权最小路径覆盖问题.计算结果表明:对比直接求解数学规划模型,图论方法在大规模场景下求解高效稳定,能够在满足任务时间要求的情况下,用更少的AGV数量以及对应运输成本最小的调度方案完成任务;针对300个任务规模的数量配置与调度问题,图论方法能够在4 s内完成求解,与数学规划模型的求解速度差距达到3个数量级,AGV数量减少10.3%.
A Graph Theory-based Approach to the Optimization of AGV Quantity Configuration and Scheduling
To improve the operational efficiency of automated guided vehicle(AGV)systems in unmanned warehouses,the problem of AGV quantity configuration and scheduling in large-scale scenarios was investigated.With the objective of minimizing the number of AGVs and the total transportation cost of AGVs,a shared network of AGVs was constructed by abstracting the spatio-temporal constraints between tasks,and transformed the quantity configuration and scheduling problem into a weighted minimum path coverage problem in graph theory.The calculation results show that compared with the traditional mathematical planning model,the graph theory method is efficient and stable in solving large-scale scenarios.It can complete tasks with fewer AGVs and minimal corresponding transportation costs while meeting task time requirements.For the quantity configuration and scheduling problem of 300 tasks,the graph theory method can solve it in 4 seconds,which is three orders of magnitude faster than the mathematical programming model,and the number of AGVs decreased by 10.3%.

warehouse logisticsAGV quantity configuration and schedulingspatio-temporal networkweighted minimum path coverage

诸葛沁沁、许钢焱、周耀明

展开 >

上海交通大学机械与动力工程学院,上海 200240

香港理工大学航空与民航工程学院,香港 999077

仓储物流 AGV数量配置与调度 时空网络 加权最小路径覆盖

国家自然科学基金上海市科技创新行动计划

720011372051106200

2024

工业工程与管理
上海交通大学

工业工程与管理

CSTPCD北大核心
影响因子:0.763
ISSN:1007-5429
年,卷(期):2024.29(2)
  • 22