首页|共享电单车系统的再平衡与换电联合优化

共享电单车系统的再平衡与换电联合优化

扫码查看
再平衡问题和换电问题是影响共享电单车运营效率的两大问题,传统研究通常将两个问题分开考虑,进行单独优化.针对该研究场景,提出了一种同时对再平衡路径与换电路径进行联合优化的整数规划模型.由负责再平衡服务的车辆将缺电电单车在站点间进行重新分布,以减少负责换电服务车辆前往的站点,从而降低成本.针对该问题,提出了一种遗传算法对模型进行求解,算法首先将染色体编码为再平衡路径与换电路径,然后使用启发式算法计算出最小的总路径距离,最后用哈啰出行在上海的共享电单车系统对模型与算法进行验证.结果表明,该算法具有较好的求解表现,且可以在合理的时间内得到优化后的再平衡与换电路径,相较于不使用联合优化的策略,平均节省路径成本15%以上.
Joint Optimization of Rebalancing and Battery Swapping in Electric Bike-sharing Systems
The rebalancing problem and the battery changing problem are two major problems that affect the efficiency of electric bike-sharing system's operations.Traditional studies usually consider the two problems separately for routing optimization.For this research scenario,an integer programming model was proposed to jointly optimize the rebalancing path and the battery swapping path simultaneously.The vehicles in charge of rebalancing service redistributed the power-deficient bikes between stations to reduce the number of stations visited by the vehicles in charge of battery swapping service,thus reducing the cost.A genetic algorithm was proposed to solve the model.The algorithm first encoded the chromosomes into rebalancing paths and battery swapping paths,and then used a heuristic algorithm to calculate the minimum total path distance.Finally,the model and algorithm were validated using the electric bike-sharing system of Hello Bike in Shanghai.The results show that the algorithm has a good performance and can get the optimized rebalancing and battery swapping paths in a reasonable time,which can effectively reduce more than 15%of the total travel cost compared to the strategy without joint optimization.

electric sharing bikesrebalancing and battery swappingjoint optimizationgenetic algorithm

于园鑫、杨毅、周耀明

展开 >

上海交通大学机械与动力工程学院,上海 201100

共享电单车 再平衡与换电 联合优化 遗传算法

青年科学基金项目

72001137

2024

工业工程与管理
上海交通大学

工业工程与管理

CSTPCD北大核心
影响因子:0.763
ISSN:1007-5429
年,卷(期):2024.29(3)