首页|基于可见光和红外图像融合的建筑外墙空鼓与脱落识别方法研究

基于可见光和红外图像融合的建筑外墙空鼓与脱落识别方法研究

扫码查看
建筑外墙空鼓与脱落的识别对于确保城市老旧建筑物周围公共安全至关重要.传统的人工原位检测方法需要耗费大量人力物力且存在一定的安全风险,此外识别结果也会受到专业人员的工作经验和工作状态等主观因素的影响.近年来,采用无人机进行图像采集并通过人工智能模型对建筑外墙缺陷进行识别的方法逐渐流行开来.然而,目前对于缺陷检测的研究仅针对单一模态的可见光图像或者红外图像,往往只能对某一缺陷进行检测,且没有考虑缺陷之间的转换关系.针对这一问题,通过融合建筑外墙的可见光和红外图像,结合两种模态的图像信息,并通过不同深度的UNet和Res-UNet模型对融合后图像进行建筑外墙缺陷识别,比较了不同深度模型的识别效果.试验结果表明,深度为4的Res-UNet模型对建筑外墙的空鼓和脱落具有很好的识别效果.
Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion
The detection of hollowing and missing of building exterior walls is crucial to ensure the public safety around aging buildings in cities.The traditional artificial in-situ detection methods are time-and la-bor-consuming with safety risks.In addition,the detection results will also be affected by subjective factors such as professional experience and working status.The method of image acquisition by UAV and detection of building exterior wall defects by artificial intelligence model has become popular.However,the current research on defect detection only focuses on visible images or infrared images of a single modality,and only detect a certain defect without considering the mutual conversion between defects.To address this issue,this research combined the visible and infrared images of the building exterior wall,considered the image information from two modalities,and compared the UNet and Res-UNet models of different depths to identi-fy the building exterior wall defects in the fused images.The experimental results showed that the Res-UNet model with a depth of 4 performed excellent on the hollowing and missing of the building exterior wall.

multimodal fusionvisible and infrared image fusionexterior wall defect detectiondeep learning

王玮、米庆仁、肖云、杨新聪

展开 >

广州地铁集团有限公司,广州 510220

哈尔滨工业大学(深圳),广东深圳 518055

中铁建华南建设有限公司,广州 510220

多模态融合 可见光和红外图像融合 外墙缺陷识别 深度学习

国家重点研发计划国家自然科学基金青年科学基金深圳市高等院校稳定支持计划

2022YFC380120352108286GXWD20220818002513001

2024

工业建筑
中冶建筑研究总院有限公司

工业建筑

CSTPCD
影响因子:0.72
ISSN:1000-8993
年,卷(期):2024.54(5)
  • 22