首页|基于藏文音节结合BiLSTM-CRF的藏语语义组块分类标注

基于藏文音节结合BiLSTM-CRF的藏语语义组块分类标注

扫码查看
针对藏语句子语义分析中语义种类繁多且广泛存在歧义的难点,提出了基于藏文音节向量和BiL-STM-CRF混合模型相结合的藏语语义组块识别方法.首先制定了13种语义组块标注规范,其次构建了13 211句语义组块标注语料库,在此基础上采用TS-BiLSTM-CRF方法训练了藏语语义组块识别和分类模型.综合测试实验结果表明,该模型精确率为75.03%,召回率为76.52%,F1值为75.77%.各类语义组块识别中,指示类(INS)识别的测评结果远高于其他几类语义组块,精确率为90.87%;组织类(ORG)的测评结果偏低于其他类型,精确率为66.67%.文章研究证实了TS-BiLSTM-CRF模型在藏语语义组块识别分析任务中具有较好的性能.
Tibetan Semantic Chunking Classification and Labeling based on Tibetan Syllables and BiLSTM-CRF
A Tibetan semantic chunking recognition method based on the combination of Tibetan syllable vec-tors and BiLSTM-CRF hybrid model is proposed to address the difficulties associated with diverse semantic types and ambiguities in the semantic analysis of Tibetan sentences.Firstly,13 semantic chunking annotation standards were developed,and a semantic chunking annotation corpus comprising 13 211 sentences was then constructed.Based on this,the Tibetan semantic chunking recognition and classification model was trained using the TS-BiLSTM-CRF method.The results of the comprehensive test experiment show that the accuracy rate,the recall rate,and the F1 value are 75.03%,76.52%,and 75.77%,respectively.Among all types of semantic chunk-ing recognition,the evaluation results show that the accuracy rate of INS class recognition are much higher com-pared to other types of semantic blocks,with a value of 90.87%,while the ORG class has a lower accuracy rate of 66.67%than those of other types.This study validates that the TS-BiLSTM-CRF model exhibits strong perfor-mance in Tibetan semantic chunking recognition and analysis tasks.

Tibetsemantic chunking recognitionTS-BiLSTM-CRF modeltokenization guidelines

旦正吉、华却才让、完么措、白颖

展开 >

青海师范大学计算机学院 青海西宁 810008

青海师范大学藏语智能信息处理及应用国家重点实验室 青海西宁 810008

青海师范大学藏文信息处理教育部重点实验室 青海西宁 810008

藏语 语义组块识别 TS-BiLSTM-CRF模型 标注规范

国家自然科学基金项目藏语智能信息处理及应用国家重点实验室项目青海省基础研究计划项目青海省应用基础研究计划项目

621660342020-ZJ-Y052020-0301-ZJC-00422021-ZJ-727

2024

高原科学研究

高原科学研究

ISSN:
年,卷(期):2024.8(2)
  • 14