首页|一类多重Laplace算子广义次谱的定量分析

一类多重Laplace算子广义次谱的定量分析

扫码查看
在Rm(m≥2)的有界区域内对一类任意多重Laplace算子的低阶谱进行研究,利用Sturm-Liouville理论、分部积分法、数学归纳法和Schwarz不等式等方法,证明了主谱与其特征函数间存在的不等式,得到了用主谱来估计广义次谱的显式上界不等式,其估计上界与算子的阶数及空间的维数有关,而与所论区域的几何度量无关,其结论是Coster和Nicaise等人结论的进一步拓展,在偏微分算子理论研究中有一定的参考价值.
Quantitative analysis of generalized second spectrum for a class of multiple Laplace operators
In this paper,we study the lower order spectrum of a class of arbitrary multiple Laplace operators in the bounded region of Rm (m ≥ 2).By using Sturm Liouville theory,partial integral method,mathematical induction method and Schwarz inequality,we prove the inequality between the main spectrum and its characteristic function,and obtain the explicit upper bound inequality for estimating the generalized subspectrum by the main spectrum.The upper bound of the estimation is related to the order of the operator and the dimension of the space,but not to the geometric measure of the region in question.The conclusion is a further extension of that of Coster and Nicaise,which has a cer tain reference value in the study of the theory of partial differential operators.

Multiple Laplace operatorGeneralized lower order spectraRayleigh theoremYoung inequalityUpper bound estimation

黄振明

展开 >

苏州市职业大学数理部,江苏苏州215104

多重Laplace算子 广义低阶谱 Rayleigh原理 Young不等式 上界估计

2020

宁夏师范学院学报
宁夏师范学院

宁夏师范学院学报

影响因子:0.138
ISSN:1674-1331
年,卷(期):2020.41(4)
  • 2