首页|Sylvester-Kac矩阵的奇异值所在区间估计

Sylvester-Kac矩阵的奇异值所在区间估计

扫码查看
利用n+1阶置换矩阵,将Sylvester-Kac矩阵化为一个主对角线上2个零块,斜对角线上2个非零块的四分块矩阵,再利用矩阵A的奇异值分解问题等价于矩阵AA*的特征值分解问题的关系,以及矩阵的Gerschgorin圆盘定理、Hermite矩阵、半正定矩阵的性质,获得了这个三对角矩阵的m个奇异值的区间估计,还获得了这个矩阵的谱半径的区间估计.
The interval estimate on the singular values of Sylvester-Kac matrix
Using n+1 order permutation matrix,the Sylvester-Kac matrix is transformed into a four blocks matrix with two zero blocks on the main diagonal and two non-zero blocks on the diagonal.Then,by utilizing the equivalent relationship between the eigenvalue decomposition problem of matrix A and the singular value decomposition problem of matrice AA*,as well as the Gerschgorin disk theorem of matrices,Hermite matrices,and properties of positive semidefinite matrices,interval estimates of m singular values of tridiagonal matrices are obtained.We also obtained an interval estimate of the spectral radi-us of this matrix.

Sylvester-Kac matrixSingular valueGerschgorin diskInterval estimate

白明月、秦建国

展开 >

郑州商学院通识教育中心,河南巩义 451200

Sylvester-Kac矩阵 奇异值 Gerschgorin圆盘 区间估计

2024

宁夏师范学院学报
宁夏师范学院

宁夏师范学院学报

影响因子:0.138
ISSN:1674-1331
年,卷(期):2024.45(1)
  • 2