首页|基于特征级联融合的图像篡改检测方法

基于特征级联融合的图像篡改检测方法

扫码查看
针对图像篡改检测领域中不能有效处理不同尺度特征问题,提出一种特征级联融合检测网络.网络采用特征级联融合模块结合U型分割网络结构,有效融合不同尺度的特征信息.通过在每个网络块融合浅层特征信息、瓶颈层和深层特征信息,以弥补深层语义信息的不足,并抑制背景信息干扰,提升了浅层网络的检测能力,实现了对篡改区域的精准定位.实验结果表明,与现有的图像篡改检测方法相比,特征级联融合检测网络显示出更高的准确性和稳定性,在CASIA数据集上F-measure提高了 3%,在COLUMB数据集上提高了4%,证明了其在图像篡改检测任务中的有效性.
Image tampering detection method based on feature cascade fusion
To address the issue of ineffective handling features at different scales in the field of image tampering detec-tion,a feature cascade fusion detection network is proposed.Firstly,the network utilizes a feature cascade fusion module combined with a U-shaped segmentation network structure,effectively integrating features of various scales.By merging shallow,bottleneck,and deep features at each network block,the network compensates for the deficiency of deep semantic information,suppresses background interference,and enhances the detection capability of the shallow network,achieving precise localization of tampered regions.Experimental results indicate that compared to existing image tampering detection methods,this feature cascade fusion detection network exhibits higher accuracy and stability.It achieved a 3%improvement in F-measure on the CASIA dataset and a 4%increase on the COLUMB dataset,providing evidence of its effectiveness in image tampering detection tasks.

Image tampering detectionImage segmentation algorithmCascade fusion lossFeature cascade fusion moduleU-shaped network structure

宣高媛、杨高明、毕飞龙

展开 >

安徽理工大学人工智能学院,安徽淮南 232001

安徽理工大学计算机科学与工程学院,安徽淮南 232001

图像篡改检测 图像分割算法 级联融合损失 特征级联融合模块 U型网络结构

安徽省自然科学基金

2008085MF220

2024

宁夏师范学院学报
宁夏师范学院

宁夏师范学院学报

影响因子:0.138
ISSN:1674-1331
年,卷(期):2024.45(1)
  • 9