首页|基于改进AlexNet网络的番茄叶片病害识别

基于改进AlexNet网络的番茄叶片病害识别

扫码查看
针对传统卷积神经网络在识别番茄叶片病害时面临的训练参数众多、耗时较长等问题,通过优化AlexNet网络,提出一种特征复用网络FRNet,并进行实验验证.实验结果表明,相较于传统的AlexNet模型,FRNet模型在训练时间和模型大小上均显著改善.FRNet模型的参数量仅为AlexNet的1.12%,模型大小也大幅缩减至2.51MB,同时平均识别准确率提升至98.82%.与其他方法相比,FRNet不仅展现出更高的识别准确率,而且适用于开发轻量级的移动端番茄叶片病害识别系统,为农业病害识别提供了新的解决方案.
Tomato leaf disease identification based on improved AlexNet network
In response to the issues of extensive training parameters and prolonged training time encountered by tradi-tional convolutional neural networks in identifying tomato leaf diseases,an optimized network based on AlexNet,termed Feature Reuse Network(FRNet)is proposed and experimentally validated.The experimental results showed that compared to the conventional AlexNet model,the FRNet significantly reduces both training time and model size.The parameter count of the FRNet model was only 1.12%of that in AlexNet,and the model size was also significantly reduced to 2.51 MB,while achieving an average recognition accuracy of 98.82%.Compared to other methods,FRNet not only exhibited higher recogni-tion accuracy but also proved to be suitable for developing lightweight mobile based systems for tomato leaf disease recogni-tion,providing a new solution for agricultural disease identification.

Convolutional neural networkFeature reuseDisease

黄曼曼、王松林、周正贵、许美珏

展开 >

安徽商贸职业技术学院 信息与人工智能学院,安徽 芜湖 241002

卷积神经网络 特征复用 病害

安徽省高等学校质量工程项目安徽省高等学校质量工程项目

2021zyyh0212021jyxm0467

2024

宁夏师范学院学报
宁夏师范学院

宁夏师范学院学报

影响因子:0.138
ISSN:1674-1331
年,卷(期):2024.45(4)
  • 21