首页|基于交叉注意力的无监督域适应轴承故障诊断

基于交叉注意力的无监督域适应轴承故障诊断

扫码查看
针对轴承在变工况场景下,振动数据存在分布差异,故障标记样本不足的跨域故障诊断问题,提出基于交叉注意力的无监督域适应轴承故障诊断方法.首先,使用交叉注意力模块对齐跨域间局部相似样本,并提取源域和目标域的故障数据特征;其次,使用基于 Wasserstein距离的域对齐策略,以对齐全局边缘特征分布;最后,对无标签的目标工况样本,提出伪标签生成方案,进一步对齐细粒度的类别信息.实验结果表明,所提方法具有较高的诊断精度,在变工况场景下更具优势.
Unsupervised domain adaptive bearing fault diagnosis based on cross-attention
In response to the issue of cross-domain fault diagnosis where vibration data distribution varies and fault labeled samples are insufficient under variable working conditions,an unsupervised domain adaptive bearing fault diagnosis method based on cross-attention was proposed.Firstly,a cross-domain module is used to align locally similar samples across domains and extract fault data features from both the source and target domains.Secondly,a domain alignment strategy based on the Wasserstein distance is employed to align the global marginal feature distribution.Finally,for the unlabeled target condition samples,a pseudo-label generation scheme is proposed to further align fine-grained class information.Experimental results demonstrate that the proposed method has high diagnostic accuracy and is more advantageous under variable working conditions.

BearingFault diagnosisTransfer learningDomain adaptationCross-attention mechanism

汪振鹏、朱晓娟

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232001

轴承 故障诊断 迁移学习 域适应 交叉注意力机制

安徽高校自然科学研究重点项目

KJ2020A0300

2024

宁夏师范学院学报
宁夏师范学院

宁夏师范学院学报

影响因子:0.138
ISSN:1674-1331
年,卷(期):2024.45(7)