首页|智能配电网大数据全景风险评估与自愈控制方法

智能配电网大数据全景风险评估与自愈控制方法

扫码查看
该文对配电网大数据进行初始聚类划分,根据智能配电网运行状态建立关联规则,实现扩展聚类的划分;基于扩展聚类,根据当前数据预测运行状态,从而确定自愈控制策略,进行智能配电网全景风险管控和自愈控制.指出了大数据技术在配电网安全稳定分析及智能预警等方面的广阔应用前景,并分析了大数据时代配电网智能化发展所面临的若干挑战.
Panoramic risk assessment and self-healing control of big data on smart distribution grid
In this paper,the big data of the DG is divided into initial cluster and the association rules are established based on running states of the DG,and the association rules can achieve extensive clustering division.Based on the current data and according to the extensive clustering division,the running states could be predicted.The panoramic risk assessment and self-healing control strategy of the DG could be achieved with the initial cluster and extensive cluster.It has been pointed out that big data technology shows broad application in the fields of on-line security stability analysis and smart alarming of the DG,the challenges of big data technology in the future for the DG are concluded.

smart distribution gridself-healing controlbig datapanoramic risk assessment

马金祥、范新南、张建生、韩庆邦、张金波、肖进

展开 >

常州工学院电气与光电工程学院,江苏常州213002

河海大学计算机与信息学院,南京210098

河海大学江苏省输配电装备技术重点实验室,江苏常州213022

智能配电网 自愈控制 大数据 全景风险评估

江苏省输配电装备技术重点实验室开放基金常州市应用基础研究计划项目江苏省普通高校研究生科研创新计划项目

2013JSSPD03CJ20159024CXZZ14_0140

2016

工业仪表与自动化装置
陕西鼓风机(集团)有限公司

工业仪表与自动化装置

CSTPCD
影响因子:0.393
ISSN:1000-0682
年,卷(期):2016.(3)
  • 6
  • 11